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Abstract 
Located between Mali, Senegal, Mauritania and Guinea, the Senegal River Basin (SRB) is a 
strategic region for the socio-economic development of these countries. The Senegal River 
Basin is divided into three main parts: The upper basin, the valley and the delta. The Bafing 
watershed is the main tributary of the Senegal River and is located in the Upper Senegal River 
Basin. The management of the Bafing watershed in time and space is possible thanks to the 
Manantali hydropower dam. The Manantali dam aims to meet the growing water, energy and 
agriculture need of the member states (Senegal, Mali, Guinea, Mauritania). The organization 
for the development of the Senegal River (OMVS) plans to build new hydropower dams 
(Koukoutamba, Boureya) upstream of the Manantali dam to increase hydropower potential in 
the Bafing watershed.  
In the future, water availability and hydropower generation are expected to be profoundly 
impacted, mainly due to the change in river flow caused by population growth, climate change, 
and Land use/land cover (LULC) change. In the coming decades, climate change and changes 
in LULC will further increase the constraints on the already scarce water resources in West 
Africa. Despite the number of studies and projects carried out on the Bafing watershed, there 
are not yet studies that have addressed the hydrological and hydropower potential (HPP) 
responses considering the combined impact of future climate change, LULC change and the 
future development of planned dams in the Bafing watershed. Therefore, this study aims to fill 
this gap by investigating the future impacts of climate change, LULC change, and altered water 
resource management on the water availability and hydropower potential (HPP) in the Bafing 
watershed.  
Firstly, two precipitation products (reanalysis (W-era5) and satellite (CHIRPS)) were compared 
to the observed precipitation of the Bafing Makana station due to insufficient data caused by 
numerous gaps in the historical time series. This exercise was done to select the best 
precipitation product to reproduce the observed precipitation. The results showed that W-era5 
represents the observed data more accurately than CHIRPS. After, ten downscaled and bias-
adjusted Global Climate Models from ISIMIP 3b were investigated to determine whether the 
models satisfactorily replicate the reference climate (temperature and precipitation of W-era5) 
of the Bafing watershed. The results indicated that the 10 GCMs could successfully replicate 
the reference climate. Hence, the median of the 10 GCMs (MME) was used to analyze the future 
trend in the near future (P1:2035-2065) and the far future (P2:2065-2095/2066-2095) compared 
to the reference period (P0:1984-2014) under ssp 126 and ssp 370. The results indicated that, 
according to the median (MME), a rise in temperature by 1.4°C and 2.0°C under ssp126 and 
ssp370 is predicted in the near future. In the far future, the difference between both climate 
scenarios is much larger and spans from 1.6°C to 3.7°C. Projected precipitation is uncertain in 
the future. Indeed, precipitation is predicted to increase under ssp126 or decrease under ssp 370 
in the near future. In the far future, precipitation is expected to decrease under both scenarios.  
Secondly, the past and future LULC change was analyzed between 1986 to 2020 and 2020 to 
2050. Landsat images and the random forest classification method were used to map LULC of 
1986, 2006 and 2020. Future LULC map in 2050 were simulated under business-as-usual 
assumptions with the Multi-Layer Perceptron and Markov Chain method embedded in the Land 
Change Modeller software. The LULC change was analyzing using the post classification 
change detection technique, a pixel-based method. The results showed that between 1986 to 
2020, vegetation, settlement, cultivated area and water increased, while the bareground 
decreased. Between 2020-2050, the results indicated that vegetation, settlement, cultivated area, 
and water are projected to increase. The Bafing watershed has seen a trend towards "more 
people, more trees". 
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Thirdly, an eco-hydrological water management model, the Soil and Water Integrated Model 
(SWIM), was set up and used to generate river discharge and simulate existing and future dams. 
SWIM model was driven by ten downscaled and bias adjusted GCMs under ssp 126 and ssp 
370 and LULC maps (1986, 2020, 2050). The analysis was carried out using a separation 
method that includes combining the two components (climate and LULC) and adjusting one 
factor at a time while holding the other constant. The result indicated that SWIM satisfactorily 
reproduces the observed flow with statistical performance measures (NSE, KGE) between 0.7 
and 0.8. Reservoir module also satisfactory reproduce the inflow, outflow, and water level of 
the Manantali dam. Under the impact of climate change, the result of the SWIM simulation 
indicated that the inflow and the HPP of the Manantali dam will decrease except in the near 
future under ssp 126, following the general trend of the precipitation in the future. Under the 
impact of LULC change, the inflow and the HPP of the Manantali dam will decrease by -5% 
and -5.7 respectively due to the conversion of bareground (with high runoff coefficients) to 
vegetation and cultivated area (low runoff coefficients) during the period 1986-2050. Under the 
effects of climate change and LULC change, the result of the SWIM simulation pointed out that 
LULC change has less impact on the inflow and the HPP of the Manantali dam than climate 
change.  
Investment in future dams has advantages, such as increased water storage, greater hydropower 
potential and improved flood protection. However, future dams will be negatively affected by 
climate change in the future (except in the near future under ssp 126), and their operation will 
lead to a loss in the hydropower potential of the Manantali dam. Therefore, the implementation 
of adaptation techniques to mitigate the impact of climate change and LULC change, as well as 
the effects of the environmental and social impacts of these dams is essential. Adaptation 
techniques can be an optimization program or adopting a new common energy policy promoting 
an energy mix that prioritizes renewable energies, namely solar and wind. The results of this 
study provide relevant information to the OMVS for the management of the Bafing watershed.  
 

Keyword: Climate change, Land use land cover change, Hydropower generation, water 

resource management, Bafing watershed, Senegal River Basin 

 

 

 

 

 

 

 

 

 



v 

 

Synthesis 

Résumé 

Situé entre le Mali, le Sénégal, la Mauritanie et la Guinée, le fleuve Sénégal est une région stratégique pour 
le développement socio-économique de ces pays. Le bassin du fleuve Sénégal est divisé en trois parties 
principales : le Haut bassin, la vallée et le delta. Le bassin versant du Bafing est le principal affluent du 
fleuve Sénégal et est situé dans le haut bassin versant du fleuve Sénégal. La gestion du bassin versant du 
Bafing est possible dans le temps et dans l'espace grâce au barrage hydroélectrique de Manantali. Le 
barrage de Manantali vise à répondre aux besoins croissants en eau, en énergie et en agriculture des États 
membres (Sénégal, Mali, Guinée, Mauritanie). L'organisation pour la mise en valeur du fleuve Sénégal 
(OMVS) prévoit de construire de nouveaux barrages hydroélectriques (Koukoutamba, Boureya) en amont 
du barrage de Manantali pour augmenter le potentiel hydroélectrique dans le bassin versant du Bafing.  
À l'avenir, la disponibilité de l'eau et le potentiel hydroélectrique devraient être profondément impactées, 
principalement en raison de la modification du débit des fleuves causée par la croissance démographique, 
le changement climatique et le changement de l'utilisation des terres et de la couverture terrestre. Malgré la 
quantité d’étude et de projets sur le bassin versant du Bafing, il n'existe pas encore d'études qui ont abordé 
la question du potentiel hydrologique et hydroélectrique compte tenu de l'impact combiné du changement 
futur du climat, de l'utilisation des terres et de la couverture terrestre et du développement des barrages 
prévus dans le bassin versant du Bafing. Par conséquent, l'objectif de cette étude vise à combler cette lacune 
en étudiant les impacts du changement climatique, de l'utilisation des terres et de la couverture terrestre et 
des futurs barrages sur la disponibilité de l’eau et le potentiel hydroélectrique dans le bassin versant du 
Bafing.  
Tout d'abord, les données de deux produits de précipitations (réanalyse (W-era5) et satellite (CHIRPS)) ont 
été comparées aux précipitations observées en raison de données insuffisantes, causées par de nombreuses 
lacunes dans les séries chronologiques historiques de la station de Bafing Makana. Cet exercice a été fait 
pour sélectionner le meilleur produit de précipitation qui reproduit les précipitations observées. Les résultats 
ont montré que W-era5 représente les données observées avec plus de précision que le CHIRPS. Après cela, 
dix modèles climatiques globaux (MCG) corrigés de biais et réduits d’échelle de l'ISIMIP 3b ont été analysé 
pour déterminer si les modèles reproduisent de manière satisfaisante le climat de référence (température et 
précipitations de W-era 5) durant la période historique (1979-2014). Les résultats ont indiqué que les dix 
MCG reproduisent avec succès le climat de référence. Par conséquent, la médiane d’ensemble des dix MCG 
a été utilisée pour analyser la tendance future à l’horizon 2050 (P1 :2035-2065) et à l’horizon 2080 
(P2:2065-2095 /2065-2095) par rapport à la période de référence (P0:1984-2014) selon les deux scénarios 
climatique ssp 126 et ssp 370. Les résultats montrent qu’une augmentation de la température de 1,4 ° C et 
de 2,0 ° C est prévue à l’horizon 2050 selon les deux scénarios ssp 126 et ssp 370.  À l’horizon 2080, la 
différence entre les deux scénarios climatiques est beaucoup plus grande et s'étend de 1,6 ° C à 3,7 ° C.  Les 
précipitations projetées sont incertaines à l'avenir. En effet, les précipitations devraient soit augmenter selon 
ssp126 ou soit diminuer selon ssp370 à l’horizon 2050. Les précipitations devraient diminuer selon les deux 
scénarios à l’horizon 2080.  
Ensuite, le changement de l'utilisation des terres et de la couverture terrestre passé et futur a été analysé 
entre 1986 à 2020 et 2020 à 2050. Les images Landsat et la méthode de classification Random Forest ont 
été utilisées pour réaliser les cartes de l'utilisation des terres et de la couverture terrestre de 1986, 2006 et 
2020. La future carte de l'utilisation des terres et de la couverture terrestre de 2050 a été simulée selon des 
hypothèses de statu quo avec le modèle Multi-Layer Perceptron et Markov Chain intégrée dans le logiciel 
Land Change Modeller. Les résultats ont montré qu'entre 1986 et 2020, les zones d’habitat, zones d’eau, 
végétation, et les zones de culture ont augmenté, tandis que les sols nus ont diminué. Entre 2020 et 2050, les 
résultats ont indiqué que les zones d’habitat, zones d’eau, végétation, et les zones de culture devraient 
continuer à augmenter. Une tendance vers "plus de gens, plus d'arbres" est observée dans le bassin versant 
du Bafing. 
Puis, le Soil and Water Integrated Model (SWIM), a été utilisé pour générer le débit et simuler les barrages 
existants et futurs. Le modèle SWIM a été piloté par les dix MCGs corrigés de biais et réduits d’échelle 
d’ISIMIP 3b selon les deux scénarios (ssp 126, ssp 370) et les cartes d'utilisation des terres et de couverture 
terrestre (1986, 2020, 2050). L'analyse a été effectuée à l'aide d'une méthode de séparation qui comprend la 
combinaison des deux composantes (climat et LULC) et l'ajustement d'un facteur à la fois tout en maintenant 
l'autre constant. Le résultat indique que modèle SWIM reproduit de manière satisfaisante le débit observé 
avec des performances statistique (NSE, KGE) comprises entre 0,7 et 0,8. Le module réservoir reproduit 
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également de manière satisfaisante le débit entrant, le débit sortant et le niveau d'eau du barrage de 
Manantali.  
Sous l'impact du changement climatique, le résultat de la simulation du modèle SWIM a montré que le débit 
et le potentiel hydroélectrique du barrage de Manantali vont diminuer dans le futur, sauf dans à l’horizon 
2050 selon le ssp 126, suivant ainsi la tendance générale des précipitations projetées. Sous l’impact du 
changement de l'utilisation des terres et de la couverture terrestre, le débit et le potentiel hydroélectrique du 
barrage de Manantali vont diminuer de -5% et -5,7 respectivement en 2020 et 2050 en raison de la 
conversion des sols nus (coefficients de ruissellement élevés) en végétation et en zones de culture (faibles 
coefficients de ruissellement). Sous les effets du changement climatique et du changement l'utilisation des 
terres et de la couverture terrestre, les résultats de la simulation du modèle SWIM ont mis en évidence le fait 
que le changement l'utilisation des terres et de la couverture terrestre a un impact plus faible sur le débit et 
le potentiel hydroélectrique de Manantali que le changement climatique.  
L'investissement dans les futurs barrages présente des avantages, tels que l’augmentation du stockage de 
l'eau, du potentiel hydroélectrique et une meilleure protection contre les inondations dans le bassin versant 
du Bafing. Cependant, les futurs barrages seront négativement affectés par le changement climatique et 
l'utilisation des terres et de la couverture terrestre à l'avenir (sauf à l’horizon 2050 selon le ssp 126), et leur 
exploitation entraînera une perte du potentiel hydroélectrique du barrage de Manantali. Par conséquent, la 
mise en œuvre de techniques d'adaptation pour atténuer l'impact du changement climatique et de l'utilisation 
des terres et de la couverture terrestre sont nécessaires. Les techniques d'adaptation peuvent être un 
programme d'optimisation ou l'adoption d'une nouvelle politique énergétique commune favorisant un mix 
énergétique qui privilégie les énergies renouvelables, à savoir le solaire et l'éolien. Les résultats de cette 
étude fournissent des informations pertinentes à l’OMVS pour la planification et la gestion des ressources 
en eau. 
 
Mots clés : Changement climatique, changement de l’utilisation des terres et de la couverture terrestre, 
production hydroélectrique, gestion des ressources en eau, bassin versant du Bafing, Fleuve Sénégal. 
 

Introduction 

L'eau douce - une ressource fragile - est essentielle à la vie, au développement et à l'environnement (ICWE, 

1992). Le premier des quatre principes de Dublin  (ICWE, 1992) reflète parfaitement la place de l'eau dans 

nos sociétés. La ressource en eau est utilisée dans de nombreux secteurs d'activité (agriculture, industrie, 

tourisme) et en particulier dans le secteur de l'énergie.  L'accès à l'énergie est une condition nécessaire à la 

vie, car elle détermine la satisfaction des besoins sociaux fondamentaux (Keeble, 1988). La transition vers 

les énergies renouvelables est devenue une nécessité face à l'épuisement prévu des combustibles fossiles et à 

l'immense défi posé par le changement climatique (Tarroja et al., 2019a; Zakara, 2007). L'exploitation des 

barrages hydroélectriques est considérée par de nombreux gouvernements et organisations internationales 

comme une composante essentielle d'une croissance économique durable, en particulier dans les pays en 

voie de développement (Harrison et al., 1998; IHA, 2019, 2022). En plus de la production d'électricité, les 

barrages hydroélectriques présentent d'autres avantages tel que l’atténuation des pénuries d'eau douce, la 

réduction des émissions de gaz à effet de serre (GES) (Kumar et al, 2011; François, 2014 ; Berga, 2016; 

Fan et al., 2020).  

Conscients de tous les bénéfices économiques des barrages hydroélectriques, les états riverains du fleuve 

Sénégal situés en Afrique de l’Ouest (Sénégal, Mali, Mauritanie, Guinée) se sont regroupés au sein de 

l'Organisation pour la mise en valeur du fleuve Sénégal (OMVS) dans le but de gérer conjointement les 

ressources en eau du bassin du fleuve Sénégal. Très tôt un programme d’infrastructure a été défini pour 

régulariser les débits du fleuve et produire de l’énergie bon marché grâce à la construction de barrages 
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hydroélectriques (Manantali, Felou, Gouina) (Bader , 2014; Bruckmann, 2016; Anne et al., 2017). L'OMVS 

gère plusieurs barrages sur le bassin du fleuve Sénégal avec différents usages tels que le barrage de 

Manantali dans le bassin versant du Bafing. L'OMVS planifie la construction de nouveaux barrages 

hydroélectriques (Koukoutamba, Boureya) en amont du barrage de Manantali pour augmenter la production 

hydroélectrique dans le bassin versant du Bafing.  

Si les barrages hydroélectriques présentent de nombreux avantages, leurs impacts environnementaux et 

sociaux, et leur vulnérabilité au changement climatique, posent la question de leur pertinence, notamment 

en Afrique. La relation entre l'hydroélectricité et le changement climatique est complexe. D'une part, 

l'hydroélectricité diminue les émissions de gaz à effet de serre (Berga, 2016). D'autre part, le changement 

climatique devrait modifier le débit des cours d’eau, ce qui affectera la disponibilité et la fiabilité de la 

production hydroélectrique (Kumar et al, 2011; Schaeffer et al., 2012; Loucks and Beek, 2016; Ranzani et 

al., 2018). Notre planète est confrontée à la question du changement climatique, qui menace tous les secteurs 

économiques (IPCC, 2021a). L’Afrique de l’ouest souffre d'une vulnérabilité importante face à la variabilité 

et au changement climatique depuis 1970 (Descroix et al. 2013; Cisse et al. 2014; ; Faye 2017; Diallo et al. 

2020). Les projections du changement climatique indiquent qu’une modification des cours d’eau est prévue 

en Afrique (Sylla et al., 2018) et dans le bassin du fleuve Sénégal (Mbaye et al., 2018). Le futur climat mondial 

est incertain et pourrait avoir de graves répercussions sur l'hydroélectricité à l'avenir (Kim et al., 2022; Sun 

et al., 2022; Wasti et al., 2022).  

En plus du changement climatique, les changements dans l'utilisation des terres et de la couverture terrestre 

(LULC), tels que la croissance urbaine et l'augmentation des zones cultivées, peuvent modifier le cycle 

hydrologique (Chang et al., 2018; Solly et al., 2021). Les LULC peuvent affecter l'écosystème, 

l'évapotranspiration, la capacité d'infiltration du sol et les régimes d'écoulement de surface et souterrain 

(Albergel, 1987; Descroix et al., 2013a; Chinwendu, 2019; Roland, 2021). Albergel (1987) a noté une 

augmentation du débit de la zone sahélienne, malgré la diminution des précipitations. Descroix et al. (2013b) 

a confirmé cette situation à travers son étude sur l'évolution des pluies extrêmes et la résurgence des 

inondations au Sahel. Cette situation est décrite comme le « paradoxe sahélien ». Elle est principalement 

due à la dégradation de la surface terrestre. Par conséquent, les modifications de la surface terrestre sous 

l'action conjointe de l'homme (déforestation et culture) et du climat ont un impact significatif sur le cycle de 

l'eau. La question à savoir comment le changement climatique et le LULC auront un impact sur la 

disponibilité de l'eau et le potentiel hydroélectrique (HPP) des barrages dans le monde en général et en 

Afrique est cruciale.  

Malgré le nombre important d’études et de projets réalisés dans le bassin versant du Bafing (Sambou et al., 

2003; Bodian, 2012; Cisse et al., 2014; Bader et al., 2015; Thiam, 2016 ; Faty, 2017; Sane et al., 2017; 

Ndione et al., 2018; Faye, 2015, 2023), une étude axée sur le potentiel impact du changement climatique et 

du changement de l'utilisation des terres et de la couverture terrestre sur les ressources en eau et le potentiel 

hydroélectrique n'a pas encore fait l’objet d’une étude. En effet, il n'existe pas encore d'études qui ont abordé 

la réponse du HPP compte tenu de l'impact combiné du changement climatique futur, du changement futur 

LULC et du développement des barrages prévus (Koukoutamba et Boureya) dans le bassin versant du Bafing. 



viii 

 

Par conséquent, cette étude vise à combler cette lacune en étudiant les impacts du changement climatique, 

du LULC et des futurs barrages sur la disponibilité de l’eau et le potentiel hydroélectrique dans le bassin 

versant du Bafing. Cette étude est divisée en plusieurs objectifs à savoir :  

1) Évaluer la performance de dix modèles climatiques globaux (MCG) corrigés de biais et réduits 

d’échelle du CMIP 6 de l'ISIMIP 3b pour reproduire le climat observé dans le bassin versant du 

Bafing et analyser les tendances futures du climat (température et précipitation) dans le bassin 

versant du Bafing. 

2) Analyser les changements spatio-temporels passés et futurs de l'utilisation des terres et de la 

couverture terrestre (LULC) dans le bassin versant du Bafing. 

3) Évaluer l'impact du changement climatique, des changements de l'utilisation des terres et de la 

couverture terrestre (LULC) sur la disponibilité en eau et le potentiel hydroélectrique des barrages 

existants et prévus dans le bassin versant du Bafing. 

Les résultats de cette étude seront d’une grande importance pour les états membres de l’OMVS. 

Zone d'étude 

La zone d'étude est le bassin versant du Bafing (Figure 1) située dans le Haut bassin versant du fleuve 

Sénégal. Le Bafing est le principal affluent du fleuve Sénégal et alimente le barrage de Manantali. Il couvre 

une superficie de 38400 km². Il couvre le nord-ouest de la Guinée Conakry et le sud-est du Mali et s'étend 

sur les latitudes 10°30' et 12°30' N et les longitudes 12°30'. Sa source est le massif du Fouta Djallon en 

Guinée, qui se trouve à 15 kilomètres de Mamou et dont l'altitude moyenne est de 1200 mètres (Bodian, 

2012).  La topographie de la zone d'étude est très accidentée dont l'altitude diminue du Sud au Nord (1370 

à 100 m). Les formations géologiques du bassin sont dominées par les granitoïdes et ne permettent pas 

l'existence de nappes importantes. Le climat comprend deux régimes du Sud au Nord (climat guinéen, climat 

soudanien). La végétation est constituée de forêts denses dégradées au sud et de forêts ouvertes de savane 

forestière et de savane boisée au nord. Cette densité de la végétation se traduit par une résistance au 

ruissèlement (Bodian, 2012). Les estimations démographiques ne sont pas très précises. L'agriculture, la 

pêche, et l'élevage sont les principales activités menées dans ce domaine. Tous ces éléments influencent 

fortement le comportement hydrologique du bassin versant.  
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Figure 1: Localisation du bassin versant du Bafing 

Données, Matériels et méthodes 

1. Objectif n° 1 

Évaluer la performance de dix modèles climatiques globaux (MCG) du CMIP 6 de l'ISIMIP 3b pour la 

reproduction du climat observé (température et précipitation) et analyser les tendances futures du climat 

(température et précipitation) à l’horizon 2050 (P1 : 2035-2065) et à l’horizon 2080 (P2 : 2065-2095) par 

rapport à la période de référence (P0 : 1984-2014) selon les scénarios ssp 126 et ssp 370. 

• Données 

Les données utilisées pour atteindre l’objectif spécifique sont les données journalières de précipitation de 

W-era 5 (1979-2016) et de CHIRPS (1981-2022), les données journaliers et mensuelles de précipitation 

observés (1981-1986 ; 2001-2003) et les données climatiques journaliers de MCG de ISIMIP 3b (CanESM5, 

CNRM-CM6-1, CNRM-ESM2, EC-Earth3, GFDL-ESM4, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, 

MRI-ESM2-0, UKESM1-0-LL). 

• Matériel et méthode 

La série des données observées présente des lacunes et sont insuffisantes à des fins de modélisation dans le 

bassin versant du Bafing. Ainsi, afin de choisir le meilleur produit de précipitation, les produits de 

précipitations W-era 5 (donnée réanalyse) et CHIRPS (donnée satellite) ont été comparés aux précipitations 

observées de la station de Bafing Makana. La performance de ces produits à représenter les tendances 

observées a été analysée sur la base d'indicateurs statistiques, tels que R2, RMSE, Pbias, NSE et le 
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diagramme de Taylor au pas de temps mensuels et annuels. Après, la performance des MCG de l'ISIMIP 3b 

à reproduire le climat de référence au cours de la période 1979-2014 a été évaluée sur la base d'indicateurs 

statistiques (R2, RMSE, Pbias, NSE), le diagramme de Taylor et l'analyse des tendances historiques. Ensuite, 

l'analyse des tendances futures du climat (précipitation, température) a été effectuée à l’horizon 2050 (P1 : 

2035-2065) et à l’horizon 2080 (P2 : 2065-2095) par rapport à la période de référence (P0 : 1984-2014) 

selon les scénarios ssp 126 et ssp 370. 

2. Objectif spécifique n° 2  

Analyser les changements spatio-temporels passés et futurs de l'utilisation des terres et de la couverture 

terrestre de 1986 à 2050.  

• Données 

Les images Landsat pour les années d’intérêt 1986, 2006 et 2020 ont été sélectionnées basées sur la 

disponibilité des données Landsat sur Google Earth Engine, pour réaliser les cartes LULC. Le modèle 

numérique d'élévation (MNE), la distance par rapport à la route, la distance par rapport au fleuve et la 

distance par rapport aux zones habitées ont été inclus en tant que données supplémentaires. 

• Matériel et méthodes 

La cartographie de LULC pour les années d’intérêts (1986, 2006 et 2020) a été réaliser en utilisant la 

méthode de classification Random Forest (RF) dans la plateforme de Google Earth Engine (GEE) (Gorelick 

et coll., 2017; Shelestov et coll., 2017). Les images Landsat de 1986, 2006 et 2020 ont été utilisées pour 

construire les cartes de LULC. La cartographie a été réalisée en trois étapes à savoir le prétraitement 

d'image Landsat, la classification supervisée avec la méthode de classification de Random Forest et 

l’évaluation de la précision de la classification. Cinq classes de LULC à savoir les zones d’habitat, zones 

d’eau, végétation, zones de culture, et les sols nus ont été utilisées dans la classification. Une matrice de 

confusion a été générée dans GEE et la précision globale (O), la précision de l’utilisateur (U), la précision 

du producteur (P) et l'indice kappa (K) ont ensuite été utilisés pour évaluer la fiabilité de la classification. 

La prédiction du changement de LULC pour l’année d’intérêt 2050 a été effectuée à l'aide du modèle hybride 

le Multilayer Perceptron neural network (MLP) and Markov chain (MLP_MC) intégré dans le logiciel Land 

Change Modeller (LCM). La prédiction de changement de LULC à l’horizon 2050 s'est faite en cinq étapes 

: l’analyse des changements, l’identification des variables explicatives, la création de cartes de potentiel de 

transition, la prévision du changement et la validation du modèle. Pour la validation du modèle, les cartes 

de LULC des années 1986 et 2006 ont été utilisées pour l’analyse de changement, la création des cartes du 

potentiel de transition et la prédiction de la carte LULC de 2020. Les indicateurs de performance tels que le 

caractéristique opérationnelle relative (ROC) et les statistiques de validation d’indices Kappa (Kno, 

Klocation, KIA) entre la carte classifiée et la carte prédite de 2020 ont été utilisés pour évaluer la précision 

de la prédiction (Ponce et Batchu, 2003). Après avoir démontré la capacité de notre modèle à prédire la 

carte LULC de 2020, la même technique de simulation a été utilisé pour prédire les cartes LULC de 2050 en 

utilisant les cartes de la couverture terrestre  de 1986 et 2020 sur la base du scénario Business As Usual 

(BAU) (Mas et al., 2014). 

3. Objectif n° 3 
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Évaluer l'impact du changement climatique, du changement de l'utilisation des terres et de la couverture 

terrestre sur la disponibilité de l’eau et le potentiel hydroélectrique des barrages existants et prévus à 

l’horizon 2050 (P1: 2035-2065) et à l’horizon 2080 (P2: 2065-2095) par rapport à la période de référence 

(P0: 1984-2014) selon les scénarios ssp 126 et ssp 370 et sur la base des changements de l'utilisation des 

terres et de la couverture terrestre de 1986 à 2050. 

• Données 

Les données utilisées pour atteindre l’objectif spécifique n° 3 sont les données climatiques de ISIMIP 3b 

(1984-2095), de W-era 5 (1984-2014), de débit de la station de Bafing Makana et de Dakka Saidou (1979-

2014), topographiques (DEM MERIT), les cartes de l'utilisation des terres et de couverture terrestre de 1986, 

2006, 2020 et 2050 et les caractéristiques physiques des barrages (Manantali, Koukoutamba et Boureya). 

• Matériel et méthodes 

Le modèle hydrologique Soil and Water Intergrated Model (SWIM) a été choisi pour simuler les processus 

hydrologiques dans le bassin versant du Bafing en vue de la prise en compte des changements de LULC, du 

changement climatique et des barrages (existants et futures). Le calage du modèle a été fait durant la période 

1979-1986 et la validation sur la période 1987- 1993 avec l'intégration des barrages (Manantali, 

Koukoutamba et Boureya). Les scénarios de développement (SD) ont été établi de manière que les futurs 

barrages soient pris en compte dans la simulation. Dans le contexte de cette étude, l'intérêt principal est 

d'évaluer l'effet du changement climatique et du changement de LULC sur l'hydrologie et le potentiel 

hydroélectrique (HPP) dans le bassin versant de Bafing en considérant d'abord le barrage de Manantali seul 

(SD1), puis le barrage de Manantali et de Koukoutamba (SD2), ensuite le barrage de Manantali, de 

Koukoutamba et de Boureya (SD3). L'hypothèse selon laquelle le changement climatique et le changement 

de LULC sont indépendants a été faite afin de séparer les contributions respectives de ces deux facteurs. 

Leurs effets ont été calculés à l'aide d'une méthode de séparation qui consiste à modifier un facteur à la fois 

(soit le climat, soit  le LULC  en maintenant l'autre constant) et la combinaison des deux facteurs (Fenta 

Mekonnen et al., 2018). Un ensemble d'indicateurs de performance pertinents tel que la fiabilité, le volume 

déversé et les probabilités de dépassement (P99, P90, P95) a été utilisé pour comparer les changements 

futurs avec la période de référence.  

Résultats et discussion 

Les résultats de la comparaison des données de la précipitation de W-era5 et de CHIRPS avec les données 

observées indiquent que les données de W-era 5 représentent les précipitations observées avec une plus 

grande précision que les données de CHIRPS. Ainsi, les données de W-era 5 ont été utilisées comme données 

de référence pour évaluer la performance de dix MCG de l'ISIMIP 3b et pour la calibration et la validation 

du modèle hydrologique. Ce choix est également justifié par le fait que la correction du biais et la réduction 

d'échelle des dix MCG de ISIMIP 3b ont été fait avec les données de W-era5. Les résultats ont montré que 

les dix MCG sont capables de reproduire la structure unimodale des précipitations, la structure bimodale de 

la température, ainsi que la tendance historique des précipitations et températures de W-era 5. La médiane 

d’ensemble (MME) a été utilisée pour analyser et décrire les tendances futures du climat à l’horizon 2050 

(P1) et à l’horizon 2080 (P2) par rapport à la période de référence (P0). Selon la médiane d’ensemble 
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(MME), une augmentation de la température est projetée à l’horizon 2050 (P1) et à l’horizon 2080 (P2) 

selon les deux scénarios (ssp 126 et ssp 370). Pour la projection de la précipitation, il y a beaucoup 

d'incertitudes. En fait, les précipitations devraient soit augmenter selon le ssp126, soit diminuer selon le ssp 

370 à l’horizon 2050 (P1). À l’horizon 2080 (P2), les précipitations devraient diminuer selon les deux 

scénarios (ssp126 et ssp 370). 

Les résultats des cartes de LULC indiquent que le Random Forest (RF) a fourni une classification très 

satisfaisante. Les résultats de la détection des changements post-classification de 1986 à 2020 ont montré 

que les surfaces occupées par les zones d’habitat, zones d’eau, végétation, et les zones de culture ont 

augmenté, tandis que les sols nus ont diminué de manière significative entre 1986 et 2020. Dans un contexte 

de croissance socio-économique, démographique, ainsi que de déforestation, l'augmentation de la végétation 

entre 1986 et 2020 est un résultat intéressant. En effet, la surface occupée par la végétation est passée de 

36% à 44%, devenant la classe d’occupation la plus dominante en 2020. L'augmentation de la végétation, 

des zones d’habitat, et des zones de culture suggèrent que lorsque la croissance démographique 

s'accompagne de l'adoption de pratiques de gestion durable des terres, elle peut conduire à une meilleure 

conservation des terres et de l'eau. En effet, dans le sud du bassin versant du Bafing en Guinée (Fouta 

Djallon), l'intensification écologique des activités rurales établie depuis longtemps ne menace pas la 

végétation (Descroix et al., 2020). Au nord du bassin versant du Bafing au Mali, plusieurs projets, tels que 

la réserve de faune du Bafing (Mali), le statut de réserve de biosphère (Mali), ont été adoptés pour lutter 

contre les pertes de biodiversité après la construction du barrage de Manantali (Faty, 2017). Les résultats 

de la modélisation de LULC indiquent que le modèle MLP-MC dans LCM a raisonnablement simulé la carte 

de l’utilisation des terres et de la couverture terrestre de 2020 et peut-être utilisé pour projeter la carte 

LULC de 2050 du bassin versant du Bafing. En 2050, les résultats de la prédiction montrent que la végétation 

couvrira 49% de la zone d'étude, soit une augmentation de 3% par rapport à 2020. Il s’ensuit des zones 

d’habitat avec une augmentation de 1% par rapport à 2020. Les sols nus seront la troisième classe avec 

22%, ce qui représente une perte de 6% par rapport à 2020. Les zones d’eau et les zones de culture 

augmenteront pour atteindre 4,8% de la superficie totale. L'analyse de la dynamique de l'état de surface a 

révélé que la croissance démographique et l'évolution des activités anthropiques (socio-économiques) 

étaient les principaux moteurs des changements de LULC.  

Le modèle hydrologique SWIM a été utilisé pour simuler les processus hydrologiques et la gestion des 

barrages dans le bassin versant du Bafing. Les résultats des simulations effectuées par le modèle SWIM suite 

au paramétrage, au calage et à la validation ont montré que le modèle SWIM reproduit les débits observés 

de manière satisfaisant avec des valeurs de Nash et de KGE supérieur à 0,8 et 0.7 respectivement pour la 

période de calibration (1979-1986) et de validation (1987-1993). Le module barrage de SWIM reproduit 

également de manière satisfaisant la dynamique des apports, des débits sortants et du niveau d'eau du 

barrage de Manantali.  

Dans un premier temps, l'impact du changement climatique sur le débit et le potentiel hydroélectrique (HPP) 

du barrage de Manantali a été analysé à l’horizon 2050 (P1) et à l’horizon 2080 (P2) par rapport à la 

période de référence (P0) selon les scénarios ssp 126 et ssp 370. Les résultats de la simulation du modèle 
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SWIM ont montré que le débit et le potentiel hydroélectrique (HPP) du barrage de Manantali suivent la 

tendance générale des précipitations projetées. À l’horizon 2050 (P1), une augmentation du débit entrant de 

6% entraînera une augmentation de la HPP de 3% selon la ssp 126 ou une réduction du débit entrant de -

1% entraînera une perte de -1% de HPP selon le ssp 370 du barrage de Manantali. À l’horizon 2080 (P2), 

une diminution du débit entrant de -4% et -8% entraînera une diminution de HPP de -8% et -14% 

respectivement selon le ssp 126 et le ssp 370.  

Ensuite, l'impact du changement de LULC sur le débit et le potentiel hydroélectrique (HPP) du barrage de 

Manantali a été examiné de 1986 à 2050. Les résultats ont indiqué que le changement de LULC a un impact 

négatif sur le débit entrant et le HPP du barrage de Manantali. En effet, le changement de LULC entraînera 

une diminution de -5% du débit et de -5,7% du HPP respectivement entre 1986-2050. Ces résultats peuvent 

s’expliquer par la conversion des sols nus (avec des coefficients de ruissellement élevés) à la végétation et 

aux zones de culture (coefficients de ruissellement faible) au cours de la période d'étude (1986,2020,2050). 

Le bassin versant de Bafing a connu une tendance « plus de gens, plus d'arbres ».  

Par la suite, l'analyse de l'impact combiné du changement climatique et de l’utilisation des terres et de la 

couverture terrestre sur le débit et le potentiel hydroélectrique (HPP) du barrage de Manantali a montré que 

bien que le changement de LULC ait un effet significatif sur le débit et le potentiel hydroélectrique (HPP) du 

barrage de Manantali, il est moindre face à celui du changement climatique. En effet, même si le changement 

de LULC réduit le HPP du barrage de Manantali de -5% en P1 selon le ssp126, les simulations combinées 

du changement climatique et de LULC prévoient toujours une augmentation de 3,2% du HPP du barrage 

Manantali. Ces résultats confirment l'hypothèse de Albergel (1987) et Bernadette Nnomo (2016) selon 

laquelle pour un bassin versant soudanien comme celui du Bafing, la diminution du débit est un effet de la 

détérioration du climat plutôt que celui du changement de LULC. 

Ensuite, l'effet de développement des futurs barrages (DS2, DS3) sur le potentiel hydroélectrique (HPP) du 

bassin versant du Bafing a été examiné. Les résultats de la simulation ont montré que l'exploitation conjointe 

des trois barrages (DS3) augmente le potentiel hydroélectrique (HPP) moyenne annuelle de 820 GWh/a 

(Manantali) à 2207 GWh/a (Manantali, Koukoutamba et Boureya) sur la période de référence (P0). De plus, 

les futurs barrages (Koukoutamba et Boureya) réduiront le risque que le niveau d'eau du barrage de 

Manantali atteigne le seuil inférieur de turbine, ce qui améliorera sa fiabilité. Les futurs barrages 

contribueront également à la réduction des volumes déversés en régulant le débit de pointe en amont du 

barrage de Manantali, réduisant ainsi le risque d'inondation dans la vallée du fleuve Sénégal. Bien que les 

futurs barrages vont augmenter le HPP dans le Bafing, ils seront négativement affectés par le changement 

climatique et le changement de LULC sauf à l’horizon 2050 (P1) selon le ssp 126. Il est donc essentiel de 

trouver des stratégies d'adaptation (programme d'optimisation ou mix énergétique) pour ajuster le 

fonctionnement de ces trois barrages et pour faire face aux effets des changements futurs.  

Conclusion  

Le présent travail décrit l’impact du changement climatique, du changement de LULC ainsi que des futurs 

aménagements hydrauliques (Koukoutamba, Boureya) sur la disponibilité de l’eau et le potentiel 

hydroélectrique dans le bassin versant de Bafing.  
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• Sous l’effet du changement climatique, le débit et le potentiel hydroélectrique du barrage de 

Manantali vont diminuer sauf à l’horizon 2050 (P1) selon le ssp 126. Ces résultats peuvent être 

attribués à la projection du changement climatique sur le bassin versant du Bafing. 

• Sous l'effet du changement de l’utilisation des terres et de la couverture terrestre, le débit et le 

potentiel hydroélectrique (HPP) du barrage de Manantali vont diminuer à cause de la conversion 

des sols nus (avec des coefficients de ruissellement élevés) à la végétation et les zones de culture 

(coefficients de ruissellement faible) au cours de la période d'étude (1986,2020,2050). Le bassin 

versant de Bafing connait une tendance « plus de gens, plus d'arbres ».  

• Sous l’effet du changement climatique et de l’utilisation des terres et de la couverture terrestre, la 

variation du débit et du potentiel hydroélectrique est causée par la modification du climat plutôt que 

celui du changement de l'utilisation des terres et de couverture terrestre. 

• L'investissement dans les futurs barrages présente des avantages, tels que l’augmentation de 

stockage de l’eau, l’augmentation du potentiel hydroélectrique et l'amélioration de la protection 

contre les inondations. Cependant, les barrages seront affectés négativement par le changement 

climatique à l'avenir (sauf à l’horizon 2050 (P1) selon le ssp 126), et leur exploitation entraînera 

des pertes du potentiel hydroélectrique du barrage de Manantali. La mise en place d’une stratégie 

d'adaptation pour ajuster le fonctionnement de ces trois barrages et pour faire face aux effets du 

changement climatique et de l’utilisation des terres et de la couverture terrestre est primordiale. Un 

programme d'optimisation ou un mix énergétique combinant l'hydroélectricité, l'énergie solaire et 

l'énergie éolienne sont des solutions d’adaptation pertinente. 

Bien qu’il existe des incertitudes liées à la modélisation (hydrologique avec SWIM, l'utilisation des terres et 

de couverture terrestre avec LCM), le présent travail a contribué à améliorer la planification et la gestion 

des ressources en eau dans le bassin versant du Bafing dans le cadre du changement climatique et du 

changement de LULC. En effet, les résultats obtenus fournissent des informations pertinentes à l’OMVS pour 

la planification et la gestion des ressources en eau.  

Cependant, il serait important d’étudier davantage les conséquences du changement climatique, de 

l’utilisation des terres et de la couverture terrestre sur le potentiel hydroélectrique, l’agriculture, l’irrigation, 

et la navigation dans le bassin versant du Bafing. En effet, des informations additionnelles  sur les pertes du 

potentiel hydroélectrique en faveur d'autres utilisations telles que l’irrigation, le soutien aux crues pour 

l’agriculture de décrue et les services écosystémiques connexes seront d’une importance capitale pour 

permettre une stratégie de gestion intégrée des aménagements hydrauliques conformément aux objectifs de 

développement durable (ODD),  en particulier la faim zéro (2), l'eau propre et l'assainissement (6), l'énergie 

propre et abordable (7), la vie aquatique (14). 
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Chapter 1 : General Introduction  

Chapter 1 presents an overview of the research, the context and problem statement, literature 

reviews and the identified gaps in knowledge. We have also dealt with the research questions, 

the main and specific objectives, hypothesis and novelty, as well as the scope of the thesis with 

expected results and benefits. The outline of the thesis concludes this chapter. 

1.1 Context and problem statement  

Freshwater - a fragile resource - is essential for life, development, and the environment (ICWE, 

1992). The first of the four Dublin principles  (ICWE, 1992) reflects perfectly the place of water 

in our societies. The water resource is used to supply drinking water for the populations and in 

many sectors of activity (agriculture, industry, tourism), particularly in the energy sector. Water 

and energy are inseparable. Indeed, Water is involved in most energy conversion methods 

(power plant cooling, hydropower generation, and extraction of conventional and non-

conventional fossil resources) (Olsson and Lund, 2017). Access to energy is a necessary 

condition for growth as it determines the satisfaction of basic social needs (Keeble, 1988). The 

African continent is relatively lagging regarding access to energy, both in rural and urban areas. 

In 2014, half of the continent's population of 1.2 billion people did not have access to electricity 

(Cantoni and Musso, 2018). According to Berga (2016), there are 1.2 billion people without 

access to energy in the world, mostly in Africa and Asia (where 80% of the people live in rural 

regions). To ensure sustainable development in Africa, the issue of access to energy for all is at 

the forefront. The transition to renewable energies has become necessary with regard to the 

projected depletion of fossil fuels and the immense challenge posed by climate change (Tarroja 

et al., 2019a; Zakara, 2007). Many countries in the world promote the development of green 

energy in an environmentally friendly manner. The deployment of renewable energy has been 

re-motivated by the severe environmental and economic effects of fossil fuel-based energy 

sources (Tarroja et al., 2019b). Many governments and international organizations view the 

exploitation of the hydropower potential of dams as an essential component of sustainable 

economic growth, particularly in the Least Developed Countries (LDCs) (Harrison et al., 1998). 

In addition to power generation, hydropower dams have other advantages. The storage capacity 

of hydropower dams can alleviate freshwater scarcity by providing security during periods of 

low flow and drought for drinking water supply, irrigation, and navigation services (François, 

2013; Kumar et al., 2011). In periods of high flow, these dams can also help in flood control 

(François, 2013; Kumar et al., 2011). Hydropower considerably reduces emissions of 
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greenhouse gases (GHGs) and participates in the mitigation of global warming (Berga, 2016; 

J. L. Fan et al., 2020). Notwithstanding their positive aspects, dams can have significant 

environmental and ecological issues, including habitat destruction,  displacement of people and 

wildlife, water quality degradation, social and cultural impacts (Chirag, 2022; Wang, 2012). 

Indeed, the construction of large dams can result in flooding vast areas, leading to the 

destruction of habitats and displacement of wildlife. This can result in the loss of biodiversity 

and ecosystem services. Dams can also cause water quality degradation due to the accumulation 

of nutrients, sediments, and pollutants. This can lead to the eutrophication of water, affecting 

negatively aquatic ecosystems. Another side effect is the displacement of local communities 

and the loss of cultural heritage sites, (which can have significant social and cultural impacts) 

(Chirag, 2022; Wang, 2012).Thus, hydropower dams developed and operated in an 

economically viable, environmentally sound and socially responsible represent the best concept 

of sustainable development (Brundtland, 1987). 

The construction of large dams in Africa is one of the responses of governments to address the 

significant challenges of water management, and to meet national electricity needs (Skinner et 

al., 2009). In Africa, 15.5% of the electricity supply is based on hydropower (Obahoundje and 

Diedhiou, 2022). Hydropower dams are a crucial source of electricity generation, especially in 

Eastern and Southern Africa (Conway et al., 2017). According to Conway et al. (2017), 90% of 

national electricity generation in Ethiopia, Malawi, Mozambique, Namibia and Zambia comes 

from hydropower dams (Conway et al., 2017). West Africa has invested relatively little in large-

scale hydropower infrastructure, and the Senegal and Niger basins allow more than 90% of the 

runoff to pass through, even though it could be used for agriculture, irrigation and hydropower 

generation (Anne et al., 2017). More than 50% of hydropower potential (HPP) in West Africa 

is yet untapped, but some large hydropower dams have been built and other projects are 

underway (Kabo-Bah, 2018). The share of hydropower in the energy mix is expected to 

continue to increase and to promote clean and renewable energy driven by national and regional 

energy plans such as the Program for Infrastructure Development in Africa (PIDA) (Conway et 

al., 2017). Scientific interest in hydropower in Africa is growing, due to the significance of 

hydropower in African countries and for compliance with the Paris Agreement (Obahoundje 

and Diedhiou, 2022).  

Aware of all the economic benefits of hydropower dams, the States bordering the Senegal River 

(Senegal, Mali, Mauritania, Guinea) have come together within the "L’Organisation pour la 
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Mise en Valeur (OMVS) du fleuve Sénégal". "L’Organisation pour la Mise en Valeur du fleuve 

Sénégal" is a French acronym that translates to "Organization for the development of the 

Senegal River (OMVS)". The OMVS is an intergovernmental organization established in 1972 

by the governments of Senegal, Mauritania, Mali, and Guinea with the goal of jointly managing 

and developing the water resources of the Senegal River Basin. The primary objectives of the 

OMVS are to develop the hydropower potential of the river, to improve irrigation for 

agriculture, to facilitate navigation, and to promote integrated water resources management in 

the basin. The OMVS oversees the management of water resources and infrastructure projects 

in the basin and is responsible for ensuring that the benefits of these projects are equally shared 

among the countries. The organization has played a key role in the development of the Senegal 

River Basin, including the construction of the Manantali multipurpose dam in the Bafing 

watershed, the Diama Dam in the valley, and the Felou and Gouina hydropower dam in Senegal 

watershed. These projects have contributed to the economic development of the basin by 

providing electricity, improving irrigation, and facilitating navigation. OMVS continues to 

work on various water management and infrastructure projects in the basin to improve the 

livelihoods of the people living in the region. Energy is a strategic choice for the OMVS (Anne 

et al., 2017; Bader , 2014; Bruckmann, 2016). In the whole area (Senegal, Mali, Mauritania, 

Guinea), weak access to electricity is a real obstacle to development. These countries face 

severe shortages and growing energy demands. The current requirement of the basin's riparian 

States is estimated at 4400 GWh/year. If the increase rate is maintained, the energy needs will 

be of the order of 15000 GWh in 2040 (Thiam, 2016). OMVS manages several dams on the 

Senegal River Basin with different uses (Diama, Manantali dam, Guinea and Felou). 

Simultaneously with the construction of dams, the OMVS is carrying out an integrated 

management strategy for shared facilities in line with Sustainable Development Goals (SDGs), 

specially: 

- The Zero Hunger (2),  

- Clean Water and Sanitation (6),  

- Clean and Affordable Energy (7),  

- Aquatic Life (7).  

The OMVS is also planning the construction of new hydropower dams at Koukoutamba and 

Boureya in the Bafing watershed with the objective of boosting hydropower generation in the 

watershed.  
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While hydropower dams have many advantages, their environmental and social impacts and 

vulnerability to climate change raise the question of their relevance with the current form, 

particularly in Africa. The relationship between hydropower and climate change is complex. 

On the one hand, hydropower significantly avoids greenhouse gas emissions and mitigates 

global warming (Berga, 2016). On the other hand, climate change is expected to alter river 

flows, which will affect the availability and reliability of hydropower generation (Berga, 2016). 

According to Teotónio et al. (2017), the energy system is one of the economic sectors most 

impacted by climate change. Indeed, changes in river flows (runoff volume, variability and 

seasonality of discharges) and extreme weather phenomena (floods and droughts) associated 

with climate change can have an impact on water availability and hydropower generation 

(Kumar et al, 2011; Schaeffer et al., 2012; Loucks and Beek, 2016; Ranzani et al., 2018). 

Several studies have shown that rainfall variations have strongly influenced the evolution of 

flows in West Africa over the last decades (Faye, 2015; Sadio et al., 2020). Climate change 

projections indicate that river regimes are expected to change in Africa (Sylla et al., 2018). The 

future global climate is uncertain and could have severe implications for hydropower in the 

future (Harrison et al., 1998; Kumar et al, 2011; Ranzani et al., 2018; Tarroja et al., 2019; 

Vicuña et al., 2011). The demand for a reliable supply of clean water to meet energy, food and 

industrial needs of a growing population and to maintain viable natural ecosystems continues 

to grow (Loucks and Beek, 2016). As climate change becomes more evident, there is increasing 

interest in identifying possible impacts on different sectors of the economy (Vicuña et al., 

2011).  

In addition to climate change, changes in land use/land cover (LULC), such as increases in 

cultivated area or settlement, can alter the hydrological cycle. Changes in LULC can affect the 

ecosystem, evapotranspiration, soil infiltration capacity, and surface and subsurface flow 

regimes (Albergel, 1987). Albergel (1987) has noted the increase in the runoff of the Sahelian 

zone, despite the decrease in rainfall. Descroix et al. (2013b) have confirmed this situation by 

studying the evolution of extreme rains and the resurgence of floods in the Sahel. This situation 

is described as the "Sahelian paradox", mainly due to land surface change. Changes in LULC 

under the joint actions of man (deforestation and cultivation) and climate significantly impact 

the water cycle. Knowledge of LULC change is one of the essential, necessary information for 

an integrated water management system (Richaud et al., 2019).  
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The question of how climate and land use/land cover change (LULC) will impact the water 

availability and the hydropower potential (HPP) in the world in general, and specially in Africa 

is crucial. The potential impacts of climate change on hydropower dams were carried out by 

numerous works to assess the consequences on water availability and hydropower potential 

(Schaefli et al., 2007;Hamududu and Killingtveit, 2012; Schaeffer et al., 2012; François, 2013; 

Sun et al., 2022; Wasti et al., 2022; Kim et al., 2022). In West Africa, few studies have been 

devoted to the impact of climate change and LULC change on water availability and 

hydropower generation, particularly in the Senegal River Basin. The West African Regional 

Centre on Renewable Energy and Energy Efficiency (ECREEE, 2017) states that although the 

consequences of climate change on West Africa's water resources are well established, research 

on how they may affect hydropower generation is lacking. Because of the importance and 

urgency of this issue, studies to assess the impacts of climate change and LULC change on the 

water availability and the hydropower potential of the Senegal River Basin are of great 

importance to the member states of the OMVS. 

1.2 Literature review 

This section provides an overview of climate change, the main issues raised by the effects of 

climate change and LULC change on water and hydropower generation reported in the 

literature. Additionally, it presents the state of the art of hydrological modelling and previous 

studies in the Bafing watershed. 

1.2.1 Climate change 

The climate system is a complex, interactive system composed of the atmosphere, land surface, 

snow and ice, oceans and others water bodies (Treut et al., 2007). The climate system varies 

over time under the influence of its internal dynamics and due to changes caused by external 

factors (called ‘forcings’) (Treut et al., 2007). External factors seem to be linked to human 

activity, which contributes to the release of greenhouse gases (carbon dioxide, methane) into 

the atmosphere (Biasutti, 2019). The warming of the climate system is strongly linked to the 

atmosphere-land-ocean system (Ashenafi, 2014). Climate models are essential tools for 

evaluating changes in climate due to external forcing and internal variability (Hausfather et al., 

2020). A climate model is a computer simulation based on mathematical equations (Ashenafi, 

2014). Climate models are the main instrument used to describe the behavior and interactions 

between the different components of the climate system (atmosphere, oceans, rivers, soil and 

ice) (Kattsov et al. 2013; Ashenafi 2014). They help reproduce past conditions and anticipate 
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how the climate system is likely to be modified on a global and regional scale (Kattsov et al. 

2013; Ashenafi 2014). Climate models offer the opportunity to project future climate for various 

scenarios using external forcings such as anthropogenic Greenhouse Gas emissions (GHGs) 

and population growth and activities  (Ly et al., 2019). The Coupled Model Intercomparison 

Project (CMIP) outputs are among the climate outputs used in the climate impact assessment. 

The Coupled Model Intercomparison (CMIP) is set up to conduct coordinated climate 

simulations among diverse research groups. This initiative, led by the World Climate Research 

Program (WCRP), enables a better understanding of the differences between climate models 

and the uncertainties brought on by model inaccuracy. There are two types of climate models: 

the Global Climate Model (GCM) and the Regional Climate Model (RCM). Global climate 

models (GCMs) can cover and simulate realistically large-scale characteristics of atmospheric 

circulation over the globe. They have a coarse horizontal resolution (100-200 km), with a poor 

representation of relief, topographic gradient, and land use (Ambrizzi et al., 2019). These are 

essential forcings of mesoscale circulations for global impact studies (Ambrizzi et al., 2019). 

Therefore, local climate replication by GCMs is challenging.  

To address the situation, "dynamic or statistical" downscaling techniques have been developed 

to achieve much finer spatial resolutions of the order of 10 to 50 km. Two international projects, 

the Inter-sectoral Impact Model Inter-comparison Project (ISIMIP; https://www.ISIMIP.org) 

and Coordinated Regional Climate Downscaling Experiment (CORDEX; 

http://www.cordex.org), have been established to define harmonized climate projections for the 

impact and adaptation of climate change studies at the regional scale and to deepen our 

understanding of regional climate (Giorgi et al., 2009; ISIMIP, 2018). The ISIMIP provides a 

bias adjustment and statistical downscaling to 0.5 degrees using GCM from CMIP6 (Coupled 

Model Intercomparison Project phase 6) (Liersch et al., 2023). Future projections are available 

for 10 GCMs from CMIP6 (Liersch et al., 2023). The CORDEX provides a dynamic 

downscaling using RCMs from different models and spatial resolution for the regional domains 

from CMIP5 (e.g. 0.11 degrees in Europe, 0.44 degrees in Africa) (Nikulin et al., 2012). The 

difference between these two experiments lies in the selection of models from the GCMs. For 

ISIMIP, models are selected from a subset of globally consistent models (Ito et al., 2020).  In 

contrast to ISIMIP, the CORDEX project is a region-specific model subset for each region of 

interest (Ito et al., 2020).  

To assess the future impact of the evolution of the GHGs emitted into the atmosphere, a 

http://www.cordex.org/
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multitude of projections of population growth and its activities have been developed. Climate 

projections are typically presented for various scenarios using external forcings such as solar 

radiation, aerosols, natural, anthropogenic GHGs emissions, and population growth (Ly et al., 

2019). Scenarios are plausible representations of an uncertain future climate and help to explore 

climate change (IPCC, 2021a). The scenarios cover a wide range of the main drivers of GHGs 

including demographic, economic and technological aspects. In its Sixth Assessment Report, 

the Intergovernmental Panel on Climate Change (IPCC) recommended the Shared Socio-

Economic Pathways (SSPs), a group of emission scenarios utilized in CMIP6 to define the 

development of GHGs by 2100 (Masson-Delmotte et al., 2021). The Shared Socio-Economic 

Pathways (SSPs) scenarios are the most complex created to date and span a range from very 

ambitious mitigation to ongoing growth in emissions. The SSPs represent alternative storylines 

about how the world might develop over the coming century based on different climate policy 

assumptions.  The SSPs combine elements from the previous two iterations of scenarios, 

the Special Report on Emissions Scenarios (SRES) and Representative Concentration 

Pathways (RPCs). The SSPs were designed to work with an updated version of the RCPs. Five 

SSPs (Figure 2, Table 1) were created, with varying assumptions about human development, 

including population, education, urbanization, gross domestic product, economic growth, rate 

of technological development, GHGs, aerosol emissions, energy supply and demand, LULC 

changes, etc. A core set of five illustrative scenarios based on the Shared Socio-Economic 

Pathways (SSPs) are consistently used: ssp 119, ssp 126, ssp 245, ssp 370, and ssp 585. These 

scenarios cover a broader range of greenhouse gas and air pollutant futures, including high-

CO2 emissions pathways without climate change mitigation and new low-CO2 emissions 

pathways (Figure 2) (IPCC, 2021b). These ssp 126 and ssp 370 were chosen to comply with 

the Paris Agreement by pursuing efforts to limit temperature increase to 1.5°C above pre-

industrial levels within the framework of ssp 126 (which is the sustainable development 

scenario) and ssp 370 (the regional rivalry or medium-high scenario). Moreover, they have 

never been used in the study area. Table 1 briefly overviews each of the five scenario narratives 

(Riahi et al., 2017). 

 

 

https://climate-scenarios.canada.ca/?page=scen-sres
https://climate-scenarios.canada.ca/?page=scen-rcp
https://climate-scenarios.canada.ca/?page=scen-rcp
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Table 1:Climate scenario definition (Riahi et al., 2017). 

Shared Socio-Economic (SSPs) Definition 

SSP1-1.9 Very ambitious scenario to represent the 1.5°C target of the 

Paris Agreement 

SSP1-2.6 Sustainable Development Scenario or moderate scenario 

SSP2-4.5 Intermediate scenario 

SSP 370 Scenario of regional rivalries or medium–high scenario 

SSP5-8.5 Development based on fossil fuels 

 

 

Figure 2:Climate scenario from  IPCC (https://www.i4ce.org/dou-viennent-les-cinq-nouveaux-
scenarios-du-giec-climat/) 
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1.2.2 Climate change and water resources  

Like many other regions in the world, water resources in West Africa are facing changes in 

climate. Several studies have shown that climate change has strongly influenced the evolution 

of flows in West Africa since 1970 (Cisse et al., 2014; Descroix et al., 2013b; Diallo et al., 

2020; Faye, 2017). Oyebande and Odunuga (2013) analyzed climate change impact on water 

resources at the transboundary basin in West Africa: the cases of Senegal, Niger, and Volta 

River Basins. Their findings showed a decrease in river flows, groundwater levels and 

accelerating desertification. Mahe et al. (2011) carried out a study to provide a global overview 

of hydrological changes in the Niger River in its various sub-catchments. Their results revealed 

that there has been substantial inter-annual variability in flows at Koulikoro and in the upstream 

basins since 1907 and a sharp decrease since 1970. Soro et al. (2011) analyzed climate 

variability and its impact on water resources in the Bandama watershed in Côte d'Ivoire. Their 

findings showed a decrease between 13% to 28% in rainfall and 58% in flow between 1966 and 

1981. Sadio et al. (2020) studied the hydroclimatic variability and change in the watershed of 

the Casamance River in Senegal. The results obtained by Sadio and his co-researchers showed 

high potential evapotranspiration (1993–2013) and considerable rainfall deficits (1970s and 

1980s). The study of hydro-climatic variability over the period 1955-1992 by Vissin (2007) 

showed that the rainfall deficits of the 1970s and 1980s were greatly amplified in the flows of 

all the rivers (Mékrou, Alibori, Sota) of the Beninese basin of the Niger River. In recent years, 

a recovery of rainfall is noted in WA after the drought period of 1960-1970. Several authors 

mention a recovery in rainfall in West Africa (Lebel et al., 2009; Diop et al., 2016; Bodian et 

al., 2020; Nouaceur and Murarescu, 2020). Bodian et al. (2020) studied the hydroclimatic 

variability and change between 1940 and 2013 in the Senegal River Basin (SRB). These 

findings indicate a rise in yearly rainfall in the SRB, which raises surface water availability. 

Climate change projection is uncertain in West Africa. Projections show that river flow are 

expected to change in many West African basins (Bates, 2008). Ouémé River is projected to 

decrease about 6.58 m3/s under Representative Concentration Pathways (RCP 4.5) while an 

insignificant increasing trend is found under RCP 8.5 (Lawin et al., 2019). The Senegal River, 

for example, is expected to experience a decrease in water availability (Mbaye et al., 2018). 

According to the results obtained by Ardoin-Bardin (2004), the variations in flows in the future 

follow those in precipitation: for example, a decrease for the Senegal River  and an increase for 

the Chari basin in Tchad. 
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1.2.3 Land use/land cover change and water resource 

Changes in land use and land cover (LULC) are a global challenge and a major area of study 

for global change research (Verburg et al., 2011; Chang et al., 2018). Land use (habitat, 

agricultural) and land cover (forests, wetlands, grasslands and water) have different meanings 

and are often used interchangeably (Tadese et al., 2021). LULC changes are the result of 

changes in the  Earth's land surface, such as the transformation of natural land cover (forests, 

grasslands and deserts) into human-dominated ecosystems (cities, agricultural and industrial 

areas) (Liping et al., 2018; Winkler et al., 2019). These changes significantly affect critical 

elements of our natural capital, such as vegetation, water resources and biodiversity (Chang et 

al., 2018;  Solly et al., 2021). Globally, the findings of LULC change research by Winkler et al. 

(2019) showed that various LULC change occurred over around one-third of the planet between 

1960 and 2019.  Several areas of the Earth's surface have recorded these changes (Roy et al., 

2015; Solly et al., 2021). However, due to several influencing factors, the dynamics of LULC 

change vary globally from one region to another (Berihun et al., 2019). Although anthropogenic 

influences have been identified as the primary agents of change, other elements such as slope, 

appearance, and altitude can also have an impact on these changes (Subedi et al., 2013; 

Kleemann et al., 2017; Anwar et al., 2022).  

In West Africa, where agriculture is the backbone of the economy (ECOWAS, 2015), gross 

LULC changes have also been observed ( Cabral and Lagos, 2017; Andrieu, 2018; Diallo and 

Zhengyu, 2018; Traore, 2018; Barnieh et al., 2020; Traore et al., 2022). These authors shown 

that WA has undergone significant changes over the years, and the causes are generally 

attributed to rapid population growth and increased agricultural areas. In fact, the study 

conducted in West Africa by Barnieh et al. (2020) revealed a 1.6% decrease in natural 

vegetation cover, enormous net gains in agriculture land (107.8%), the increase of artificial 

water bodies, and rapid population growth. The question regarding LULC changes and their 

impacts on hydrological flows are of primary interest for water and land management (Blöschl 

et al., 2019). Several studies have been conducted in West Africa to improve information on 

the influences of LULC change on water resources (Albergel, 1987; Chinwendu, 2019; 

Descroix et al., 2013a; Roland, 2021). These works have shown that these changes influence, 

modify, and affect the hydrological processes of the watersheds, with great variability due to 

topography and the local climate.   
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1.2.4 Climate change, Land use/land cover change and hydropower generation  

The largest and most popular renewable energy source in the world is hydropower. Hydropower 

generation is predicted to undergo significant changes in the twenty-first century, primarily 

because of the altered river flow brought on by climate change and LULC change. Existing 

studies have indicated that climate change may negatively affect hydropower in the future. 

Indeed, Vicuña et al. (2011) analyzed the effects of climate change on two high-altitude 

hydropower systems in California. They reported a decrease in runoff associated with 

precipitation decreased and temperature increased; thus reducing hydropower generation and 

associated revenues. Fan et al. (2020) further examined the impact of climate change on the 

hydropower system of China. The results showed that hydropower is sensitive and vulnerable 

to climate change, which leads to many uncertainties about its future development. Kim et al. 

(2022) also analyzed the climate change impact on water availability and hydropower 

generation in Northern Manitoba in Canada. Their findings indicated that hydropower 

generation is expected to increase in spring and summer but decrease in winter and fall.  

Spalding-Fecher et al. (2017) explored the impact of climate change on hydropower in the 

Zambezi basin. The results projected a 10-20% decrease in hydropower generation in a dry 

climate and a marginal increase in a humid climate. Bahati et al. (2021) examined how climate 

change and LULC change will affect the hydrology and hydropower generation in Ugandan 

rivers. Their findings indicated that there will be a large increase in annual hydropower capacity 

for the combined future influence of climate and LULC changes. Obahoundje et al. (2021) 

evaluated the impacts of (i) LULC change, (ii) climate change (CC), and (iii) development 

conditions on water resources and the hydropower potential in the Mono Basin (West Africa) 

using CORDEX data and WEAP Model. Their results showed that under both RCPs in the near 

(2020-2050) and far (2070-2090) futures, the temperature is expected to rise significantly, but 

the precipitation change is unknown. These changes in climate variables consequently affected 

simulated water availability and the hydropower generation the near and far futures. 

1.2.5 Hydrological modelling  
Water resources are variable in time and space; so their estimation at the watershed scale 

requires the use of hydrological models (Poncelet, 2016). Modelling the hydrological behavior 

of the watersheds is essential for managing water resources and land use planning (Gnouma, 

2006). Hydrological modelling aims to study the water cycle and understand the interactions 

between precipitation, evapotranspiration, runoff, and infiltration at the spatial and temporal 

scales of the watershed (Leye, 2023). The hydrological model converts the climate time series 
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representing a watershed into a series of flows (Oñate-Valdivieso et al., 2016). A hydrological 

model is only a simplification of the hydrological system of a watershed (Ahbari, 2013). It 

involves using mathematical expressions to define quantitative relationships between inputs 

and outputs (Ashenafi, 2014). With the introduction of GIS, satellite remote sensing images, 

high-resolution digital elevation models, distributed hydrologic models, and real-time flood 

predictions, hydrological modelling has significantly advanced in recent years (Chinwendu, 

2019). Nowadays, different models exist to simulate the hydrology cycle of watersheds under 

LULC and climate change. There are numerous hydrological models in the literature, ranging 

from global models to distributed models, and they differ mainly on their physical foundations, 

level of complexity, and data requirements (Singh, 1995) (Table 2).  

Hydrological models can be classified according to three criteria: the way processes are 

described, the spatial scale, and the temporal scale (Victora et al., 2008). Considering the 

description of flow processes, a distinction is made between empirical, conceptual, and physics-

based models. Empirical models are built around mathematical relationships that establish 

connections between input and output variables without considering the internal laws and 

processes of the watershed (Leye, 2023). Unlike empirical models, physical-based models 

depend on the laws of physics and physical knowledge of the system to describe the 

mechanisms of flows within the watershed (Sadar Shahraki et al., 2016). These patterns 

determine the physical processes as they occur in nature. Conceptual models rely on a particular 

conceptualization of how the system works while involving empirical relationships based on 

mathematical functions to describe it (Leye, 2023). These models treat input parameters as 

global ones over the entire watershed (Karambiri et al., 2003).  

Depending on the spatial scale, a distinction is made between global, distributed and semi-

distributed models. The global model carries out a simple hydrological balance using 

parameters weighted on the surface of the watershed. These models do not consider spatial 

variations of the input variables. Distributed models are rainfall-runoff models,  considering the 

spatial distribution of input variables, boundary conditions and watershed characteristics (Leye, 

2023). The production and transfer functions are not homogeneous throughout the watershed. 

The semi-distributed models were developed to combine the advantages of global and 

distributed models. These models are broken down into homogeneous spatial units 

(hydrological response units) (Krysanova et al., 2015a). Based on the temporal scale, a 

distinction is made between "event-based" and "continuous" models, depending on how the 
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model operates over time. Continuous models make it possible to continuously simulate the 

hydrological process and follow the evolution of state variables and outputs over a given period 

(Roland, 2021). In contrast, event-based models simulate hydrological processes for events 

such as flood episodes (Karambiri et al., 2003).  

Table 2: A non-exhaustive list of some hydrological models (This Table is inspired from 

Soussou Sambou et al. (2003); Valentina Krysanova, Hattermann, and Wechsung (2005); 

Bodian (2012); Faty (2017); Didier Maria Ndione et al. (2020); Moussé Landing Sane et al. 

(2020)) 

Models Definition Type 

MIKE SHE 

 

Mike Système 

Hydrologique Européen 

Physical, Distributed 

HBV Hydrologiska Byrans 

Vattenavdelning model 

Conceptual, continuous, Semi-distributed 

TOPMODEL TOPopgraphy based 

hydrological MODEL 

Physical, Distributed 

GR (GR4J) 
 

Génie Rural Conceptual, global, continuous, empirical 

SWAT 

 

Soil Water Assessment 

Tool 

Semi-distributed, continuous with physical based 

HEC-HMS 

 

Hydrologic Modelling 

System 

Events, continuous, physically-based, distributed 

 

SWIM Soil and Water Integrated 

Model) 

Semi-distributed, continuous or event-based, physically based 

TOPMODEL TOPography based 

hydrological model 

Distributed, continuous 

VIC Variable Infiltration 

Capacity 

Semi-distributed, conceptual, continuous 
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1.2.6 The Bafing watershed 

The Senegal River Basin (SRB), located in West Africa, is a transboundary basin bordered by 

four countries: Guinea, Mali, Mauritania, and Senegal. It cumulates several sub-watersheds, 

including the Bafing watershed. The Bafing watershed is the main tributary of the Senegal River 

and feeds the large Manantali multi-purpose dam. A dense scientific bibliography exists on the 

Bafing watershed. Most of the works has been carried on the impact of climate change or 

variability on water availability. Other studies on the effects of the Manantali dam on the 

downstream flow have been carried out. Cisse et al, (2014) studied the evolution of the 

hydrological regime to understand the effect of climate variability and dam on flows. Faye 

(2015) assessed the impacts of climate change and the hydraulic development on the water 

resources. Faty (2017) further studied the issue of climate change impact on water resources in 

the context of hydro-climatic variability and LULC change (2007-2014). He carried out 

modelling based on geospatial data and established the relationships between climate 

variability, LULC change and flows between 2007 and 2014. Sambou et al. (2019) investigated 

the influence of the Manantali dam on the water levels in Bakel for the month of September. 

Numerous other works relate to the management and planning of the water resources. Bodian 

et al. (2012) for instance, analyzed the water resources management issue in the Bafing 

watershed. Integrated water resource management appears to be a necessity at all levels (local, 

regional, national, and international) due to the often-dramatic consequences of water scarcity 

on the human, economic and political levels. Bader (2001) and Bader et al. (2016)  have made 

several studies concerning Manantali dam management to satisfy the water needs of all users 

(Program for Optimization of Dam Management (POGR)), especially the artificial flooding for 

flood recession cultivation (Bader and Albergel, 2015). Thiam (2016) assessed the impacts of 

future dams on the long-term availability of water resources with the WEAP model. 

Furthermore, studies on the future effects of climate change on water resources have also been 

carried out. Ardoin-Bardin (2004) attempted to provide elements of knowledge on the relation 

between   climate variability and water resources. Ardoin-Bardin (2004) assessed the impact of 

climate change on the flow of large rivers in West and Central Africa (Senegal, Gambia, 

Sassandra, Logone-Chari) based on the outputs of GCMs. Mbaye et al. (2015) assessed the 

future impact of climate change on water resources using bias-corrected data from REMO 

(regional climate model developed by the Max Planck Institute for Meteorology in Hamburg, 

Germany) for two scenarios particularly the representative concentration pathways RCP4.5 and 

RCP8.5). Sane et al. (2019) analyzed the trends and flow shifts using the SWAT model and 
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three GCMs from 2006-2090 at the Bafing Makana station. Ndione et al, (2020) implemented 

an ensemble forecasting system to provide helpful inflow forecasts of the Manantali dam.   

Despite the amount of documentation and numerous projects in the Bafing watershed, a study 

on the potential impact of climate change and land use/land cover change on water resources 

and the hydropower potential has not been yet carried out. Indeed, there are no studies, up-to-

now, that have addressed the hydrological and hydropower potential (HPP) response 

considering the combined impact of future climate change, land use/land cover change (LULC 

change) and the development of planned dams in the Bafing watershed. 

Based on the problem statement, the following research questions are raised. 

1.3 Research Questions 

 - What will be the effects of climate change and land use/land cover change on water 

availability in the Bafing watershed? 

 - What will be the impact of climate change and land use/land cover change on the hydropower 

generation of the Manantali dam in the Bafing watershed?   

- What will be the positive or negative impacts of the future planned hydropower dam on water 

availability and hydropower generation considering climate and LULC changes in the Bafing 

watershed?  

1.4 Objectives   

1.4.1 Main objective 

The main objective of the research is to assess the impacts of climate and land use/land cover 

change on water availability and the hydropower potential in the Bafing watershed located in 

the Senegal River Basin. Emphasis will be placed on current and future hydropower dams in 

the Bafing watershed. The proposed approach is based on the "Water-Energy " Nexus.  

1.4.2 Specific objectives  
The following specific objectives will be adopted to achieve the main objective of the research. 

➢ Specific objective 1: To analyze the performance of Global Climate Model (GCM) of 

CMIP 6 from ISIMIP 3b in reproducing the observed climate (temperature and 

precipitation) (1979-2014) and the future (temperature and precipitation) trends for the 

near future (P1: 2035-2065) and the far future (P2: 2065-2095) compared to the 

reference period (P0: 1984-2014) under ssp 126 and ssp 370. 
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➢ Specific objective 2: To analyze the land use and land cover changes (LULC) based on 

the historical period between 1986, 2006 and 2020 and projection of the LULC change 

of the year 2050. 

➢ Specific objective 3: To evaluate the impact of climate change, land use/ land cover 

changes on the water availability and hydropower potential of the existing and planned 

dams in the near future (P1: 2035-2065) and the far future (P2: 2065-2095) compared 

to the reference period (P0: 1984-2014) under ssp 126 and ssp 370 and based on LULC 

change from 1986 to 2050. 

1.5  Hypothesis  
The hypothesis of this study is as follows: 

- Combined changes in climate and land use/land cover will have a negative 

impact on the water availability in the Bafing watershed. 

- Combined changes in climate and land use/land cover will have a negative 

impact on the hydropower potential in the Bafing watershed. 

- The exploitation of the future dams will have a positive impact on the water 

resource management and hydropower generation in the Bafing watershed. 

1.6 Novelty  
The main novelty of the thesis is the combined analyses of the climate change, land use/land 

cover change, and planned dams on the water management and hydropower generation in 

Bafing watershed.  

1.7 Scope of the thesis  

The OMVS works on many infrastructure and water management projects to enhance the 

standard of living for residents. For shared facilities, the regional organization is implementing 

an integrated management strategy in line with sustainable development goals, in particular, 

Zero Hunger (2), Clean Water and Sanitation (6), Clean and Affordable Energy (7), Aquatic 

Life (14). The framework of the thesis is based on quantifying the combined impacts of climate 

change and land use/land cover change on water and hydropower generation as well as 

modelling the existing and future dams in the Bafing watershed.  

The thesis focuses also on the SDGs (7) (clean and Affordable Energy) under climate change 

and land use land/cover change in the Bafing watershed. Thus, future work should look at the 

synergies and trade-offs in water resources management in the Senegal River Basin considering 
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the SDGs (7) (clean and Affordable Energy) and the SDGs (2) (Zero Hunger) under climate 

change and land use/land cover change. 

1.8 Expected results and benefits. 
The main expected benefit of the study is that information on the future impact of climate 

change, land use/land cover change, and planned dams will be provided to the regional decision-

makers. Such information will probably help to improve knowledge of the nexus "Water, 

Energy" in the Bafing watershed. It is a starting point for developing better adaptation strategies 

to manage water resources. Elsewhere, we hope that this research will be of interest and a great 

contribution on the research fields of the West African Science Service Centre on Climate 

Change and Adapted Land Use (WASCAL). WASCAL is an essential player in the region 

whose mission is to provide information and knowledge at the local, national and regional 

levels. One of the main goals is to create a critical mass of the next generation of scientists and 

specialists on various issues related to climate change through its Capacity Building 

Department. 

1.9 Outline of the thesis 

This thesis report includes a general introduction, six chapters and a general conclusion and 

recommendations. The outline is as follows:  

Chapter 1 presents the overview of the thesis research, the state of the art, and the knowledge 

gaps. Moreover, research questions, main and specific objectives, hypothesis and novelty, as 

well as thesis scope with expected results and benefits, are described. 

Chapter 2 introduces the study area. It describes the localization, relief, vegetation, climate, 

hydrography, soil, land use and demography, social and economic activities of the study area. 

Chapter 3 deals with the overall data, materials and method used. 

Chapter 4 presents the first objective, which is to evaluate the performance of GCMs of CMIP 

6 from ISIMIP 3b in reproducing the observed climate (temperature and precipitation) and to 

analyze future (temperature and precipitation) trends for the near future (P1: 2035-2065) and 

the far future (P2: 2065-2095) compared to the reference period (P0: 1984-2014) under ssp 126 

and ssp 370. 

Chapter 5 deals with the second objective, which is to analyze the land use and land cover 

changes (LULC) based on the historical period between 1986, 2006 and 2020, and the 

projection of the LULC changes to 2050. 
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Chapter 6 addresses the third objective by analyzing the impact of LULC change, climate 

change, and the exploitation of future dams on water availability in the near future (P1: 2035-

2065) and the far future (P2: 2065-2095) compared to the reference period (P0: 1984-2014) 

under ssp 126 and ssp 370 and based on LULC change from 1986 to 2050. 

Chapter 7 addresses the third objective by analyzing the impact of LULC change, climate 

change and the exploitation of future dams on hydropower generation in the near future (P1: 

2035-2065) and the far future (P2: 2065-2095) compared to the reference period (P0: 1984-

2014) under ssp 126 and ssp 370 and based on LULC change from 1986 to 2050. 

Chapter 8 summarizes the main conclusion and recommendations. It concludes the thesis by 

showing the main findings, providing research limitations, and giving orientation for future 

research. 
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Chapter 2: Study area 

Chapter 2 presents the study area of this study. It focuses on the characteristics of the area 

(location, relief, vegetation, climate, hydrography, soil, land use and demographics), as well as 

social and economic activities. This chapter also describes existing and planned hydropower 

projects. 

2.1  Localization  

The Senegal River, located in West Africa, is the third largest transboundary basin in West 

Africa.  The Senegal River Basin covers four countries: Guinea, Mali, Mauritania and Senegal 

(Figure 3). It is 1700 km long and drains a basin of approximately 300,000 km². The Senegal 

River Basin (SRB) is divided into three main parts: The upper basin, the valley and the delta. 

The study area concerns only the upper SRB, the Bafing watershed (Figure 3). The Bafing 

watershed is the main tributary of the Senegal River. The Bafing watershed covers an area of 

around 38400 km² and spreads from northwestern Guinea Conakry to southeastern Mali and 

extends over latitudes 10°30' and 12°30' N and longitudes 12°30'. It has its source in the Fouta 

Djallon’s mountains. The Fouta Djalon is a natural and cultural mountainous region of middle 

guinea in the northern part of the country and extends to the borders of Senegal and Mali 

(Orange, 1990). The Fouta Djalon is unanimously recognized as "the water tower of West 

Africa" in reference to the many international rivers (Niger, Senegal, Gambia, Tominé and 

Konkouré) that have their source there (Descroix et al., 2020).  
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Figure 3:Location of the Bafing watershed. The background in color gradient indicates the 
elevations of the relief on the basin. 

2.2 Relief 

Relief is essential for understanding the hydrological behavior of a watershed. It establishes the 

soil's suitability for runoff, infiltration and evaporation (Bodian, 2012). Relief data have been 

established from a digital elevation model (Merit DEM).  Figure 4 shows the distribution of 

altitudes on the basin, which vary between 89 m to 1370 m with an estimated average altitude 

of 338 m. The analysis of Figure 3 shows that the southern part of the Bafing watershed is the 

most mountainous, with altitudes between 730 and 1370 m. The altitude decreases towards the 

North where these plateaus reach only 100 to 400 m. The study area presents a succession of 

sub-tabular reliefs, consisting of dolerite and granitic formations, covered discontinuous 

lateritic formations (Bodian, 2012).  
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Figure 4:Digital Elevation Model of the Bafing watershed 

Hypsometric curves and slope indices also make it possible to appreciate the relief. The 

hypsometric curve represents the distribution of the watershed's surface area (cumulative 

percentage of area) as a function of its altitude (Asfaw and Workineh, 2019). The hypsometric 

curve of the Bafing River appears in Figure 5. Slope indices are determined from knowledge of 

the hypsometric distribution over the watershed (Choudhari et al., 2018). The overall index (Ig) 

is obtained by the following equation: 𝐼𝑔 = DL                                                                                                                                           (6) 

Where Ig is the slope, L is the length, D is the difference of altitude,  𝐷 = 𝐻5 − 𝐻95 where H5 (altitude corresponding to 5% of the watershed on the hypsometric 

curve) and H95 (altitude corresponding to 95% of the watershed on the hypsometric curve) 
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Figure 5:Hypsometric curve of the Bafing watershed 

A watershed is a collector device meant to collect rainwater by channeling it to the outlet. How 

the volume of water is distributed over time will depend on the shape of the watershed, its relief, 

and the drainage network. Watershed delineation of the Bafing is based on Digital Elevation 

Model (DEM) data. GRASS Geographic Information System (GIS) software, a free and open-

source GIS software package that is generally used for geospatial data management, analysis, 

and visualization, is used to determine watershed surfaces and perimeters. To characterize the 

shape of a watershed, the compactness index of Gravelius is used. The watershed area (Sb) (1) 

(km2), the watershed perimeter (Pb) (2) (km) and the compactness index (Kg) (3) are calculated 

by applying the following formulas:  

 𝑆𝑏 =  Lb ×  lb                                                                                                              (1) 𝑃𝑏 = 2(Lb +  lb)                                                                                                         (2)  𝐾𝑏  = 0.28 × Pb√Sb                                                                                                         (3) 

With 𝐿𝑏 (4) the equivalent rectangle length, 𝑙𝑏 (5) the equivalent rectangle width, 𝐿b et 𝑙b have 

been calculated using by the following equations: 
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𝐿𝑏 = Kg√Sb1.12 [1 + √1 − ( 1.12Kg )²]                                                                                   (4) 

𝑙𝑏 = Kg√Sb1.12 [1 − √1 − ( 1.12Kg )²]                                                                                    (5) 

 

The physical characteristics of watersheds are presented in Table 3. 

 

Table 3: The physical characteristics of the Bafing watershed (catchment and sub catchment) 

based on the digital elevation model (Merit DEM) and GRASS Gis; min=minimun, 

max=maximun, L= Stream length, Ig= slope 

Catchment 
Area 

(Km²) 

Perimeter 

(Km) 
Ig 

Longueur 

(Km) 

Largeur 

(Km) 

Min (m) 

elevation 

Max (m) 

elevation  
L (km) 

Catchment Bafing  28142 1744 3 839 34 153 1415 57 

Sub-

Catchment 
Manantali dam 6010 516 2 232 26 153 671 11 

Sub-

Catchment 
Bafing makana 6389 597 2 275 23 223 882 12 

Sub-

Catchment 
Dakka Saidou 921 179 2 78 12 307 904 4 

Sub-

Catchment 
Boureya 4149 496 2 230 18 329 986 15 

Sub-

Catchment 
Koukoutamba  10674 695 2 314 34 463 1413 14 

2.3 Climate 

The Bafing watershed has a Sudano-Guinean climate. The Sudano-Guinean climate which 

predominates in Guinea, is in transition between a very humid climate observable in the south 

and a drier climate of the "Sudanese" type in the north. It is explained by the movements of the 

Inter-tropical Boreal Front, which separates the harmattan (cool and dry wind, blowing in the 

North-South direction) and the Monsoon (hot and humid wind blowing in a south-north 

direction). These two fluxes differ from their humidity; therefore dividing the year into two 

distinct seasons: dry and wet. Thus, there are two weather conditions the dry season from 

December to March and the rainy season from May to October. The rainfall regime is unimodal, 

with annual rainfall varying roughly between 600 mm and 1600 mm at the Bafing Makana 

station, considering the periods 1979-1984 and 2001-2003. Figure 6 shows the average monthly 
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rainfall profile in the Bafing Makana station. It clearly pinpoints that July, August, and 

September are the rainiest months. 

 

 

Figure 6: Average monthly rainfall at Bafing Makana over the period 1979-1984 (Observed 
data) 

Annual temperatures vary between 23.3°C (mean minimum) and 37.7°C (average maximum) 

(Bodian et al., 2012). The  Potential Evapotranspiration (PET) calculated by Bodian et al. 

(2012) with the Penman-Monteith method at the Labe station is an average of 134 mm (monthly 

cumulation). 

2.4 Vegetation 

The vegetation in the Bafing watershed is divided into two domains associated with decreasing 

rainfall from south to north (Bader J-C., 2014). Those domains are: 

1) The Guinean domain covered by dense forest.  

2) The Sudanese domain characterized in the south by open forest, savannah and parklands, 

whose density decreases towards the north to make way for a wooded savannah. The gallery 

forest is also observable. Regarding biodiversity, there are also several classified reserves (Faty, 

2017): 

1. The Baoulé Loop Biosphere Reserve (Mali). 

2. The Bafing Wildlife Reserve (Mali). 
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3. The chimpanzee sanctuary (Mali) - the Bafing – Faleme transboundary protected area (Mali 

– Guinea), in the process of being classified as a biosphere reserve. 

4.  The Ramsar Bafing – Source and Bafing – Faleme (Guinea) sites.  

Nowadays, the area is threatened by the extension of human settlement sites, the increase in 

livestock and livestock stocking in the surrounding areas, the practice of slash-and-burn 

agriculture, the advance of the cotton front, hunting, industrial and artisanal exploitation of 

gold, gold panning, deforestation, and poaching (Faty, 2017). 

2.5 Hydrography  

The Bafing River has its source in the Fouta-Djallon massif, about 800 meters above sea level, 

a source located nearly at fifteen miles northwest of Mamou, in the Guinean territory. The 

Bafing network (Figure 7) includes several rivers that flow between the granite and dolerite 

massifs forcing it to take very diverse directions (Bodian, 2012).  The profiles along the Bafing 

River are very rugged and cut off many rapids (Figure 8). The Bafing River is 1006 km long 

for a total vertical drop of 789 meters, and an average slope of 0.78 %. Water drained from the 

Bafing watershed flows into the Manantali dam. 

 

Figure 7:Spatial representation of the hydrographic network (Merit Dem and GRASS Gis) 
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Figure 8:Hydrographic network (Bader, 2014) 

 

2.6 Soil  

The texture of different soil types, such as vertisols and para vertisols, tropical eutrophic brown 

soils, allomorphs, and soils rich with tropical and hydromorphic ferruginous exists in the study 

area. The geological formations of Fouta Djalon have undergone a long evolution during which 

tectonic movements, climatic changes, and variations in sea level have shaped the main 

landscapes through flattening surfaces. According to the report entitled “Monographie du fleuve 

Sénégal” by Bader in 2014, there are three types of geological formation: Precambrian bedrock, 

Paleozoic bedrock and Tertiary bedrock. The Precambrian bedrock is composed of schists or 

mica schists, quartzites and ancient rocks transformed into green stones. Granites cover these 

different rocks. The Paleozoic consists of sandstone, quartzites, and limestones. The tertiary is 

formed by clay sands of varied colours in which clay or sandstone levels are interspersed. 

2.7 Demography and environmental, social, and economic activities  

The population of the Bafing watershed is not accurately assessed. Agriculture (rainfed 

agriculture and irrigation) is the main activity in the watershed. The main crops are millet, 

fonio, rice, maize, potato, cassava and groundnuts. Livestock farming is the second activity. 

The river's mineral resources are highly exploited, especially by the development of gold 

panning in Mali. The current water needs of the mining sector are estimated at 13 billion m3.  
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2.8 Hydropower projects  

To meet the development challenge, the OMVS has made its contribution by evolving 

hydropower dams. The management of water resources in the SRB has been achieved through 

various hydraulic structures that perform multiple and sometimes contradictory functions 

through RUD (Resource User Decision) processes (Bader, 2014). The main hydraulic 

developments carried out to date on the Senegal River are the four functional dams with 

different vocations: the Diama (1986), the Manantali dam (1988) and Felou (July 2013) and the 

Gouina  (Bader, 2014).  

Only the Manantali dam is located in the Bafing watershed and has operated since 1987 (Bader, 

2014). It has a height of 68 m and a length of 1476.35 m (Figure 9). It covers an area of 477 

km² and ensures a strong regulation of the river flow. It is a multi-purpose hydropower dam 

designed and operated to provide various services. Such services include generating electricity 

(approximately 876 GWh/y of per year), mitigation of floods, low-flow support for navigation 

and irrigated agriculture in the valley, the supply of drinking water, flood support ensuring 

sufficient annual flooding in the valley for traditional agriculture practices and ecosystem 

maintenance (Bader and Albergel, 2015).  

The management principles are defined in the Dam Optimization and Management Program 

(Bader et al., 2015) and aim to optimize the use of water resources in a context of competition 

between users. The proposed management of the Manantali dam consists of applying a series 

of instructions assigned by priority and management constraints. The Institut de Recherche pour 

le Développement (IRD) has developed the Simulsen software, which models the management 

of a dam in detail at daily time steps. It manages flow propagation times and allows an optimal 

calculation of the limit limnigrams to be respected in the Manantali dam (Bader and Rolland, 

2005). 

The construction of new hydropower dams is on the future agenda of the Bafing watershed. 

These dam projects include the Koukoutamba and the Boureya upstream of Manantali dam 

(Figure 9). The development of these future dams aims at improving water resource 

management. They will therefore play an essential role in sustainable and integrated 

management that reconciles economic objectives, social well-being and environmental 

concerns. They are considered assets for the restoration and sustainable management of the 

river ecosystem in general (Bader, 2014; Faty, 2017). 
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Figure 9:Existing and planned hydropower dams (OMVS, 2012a) 

2.9 Conclusion 

The study of the features of a watershed (topography, geology, hydrogeology, climate, 

vegetation) is necessary for understanding hydrological behavior and hydrological modelling. 

Indeed, these parameters, according to their influence, determine the modalities of the flow. 

The topography of the study area is characterized by a sub-tabular dolerite or granitic relief 

whose altitude decreases from South to North (1370 to 100 m). The Precambrian, Paleozoic 

and Tertiary basements are the main geological formations recorded in the area. The climate 

includes two regimes from South to North (Guinean climate, Sudanian climate). The 

distribution and density of vegetation directly influence river flow as well as climatic factors. 

The vegetation in the Bafing watershed is densely degraded forests in the south and open 

savannah forests in the north. This density of vegetation translates into resistance to river flow.  

Indeed, from the beginning of the rains, the soil behaves like a vegetated zone soil, absorbing 

most of the rainwater through litter, even dry and residual, then highly developed root systems. 

Runoff only appears once the soil is saturated. This is known as saturation runoff or 

"Cappusian" behaviour (Descroix, 2020). Population estimates are not very precise. 

Agriculture, fishing, and livestock are the main activities. All these physiographic elements 

strongly influence the hydrological behaviour of a watershed.  
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Chapter 3: Data, materials, and methods 

Chapter 3 presents data, materials and methods based on each objective. 

3.1 Data 

3.1.1 Climate data 

➢ Observed data  

Hydrological modelling requires long, complete and accurate time series (precipitation, 

temperature, relative humidity, solar radiation) (Cucchi et al., 2020). Data selection criteria are 

generally based on four fundamental factors: large sample size, proximity to the study area i.e. 

geographical position, data quality (small gaps in the observed series) and the geopolitical 

context of the country (Faty, 2017). At the level of the Bafing watershed, the monitoring and 

collection of climate data are the responsibility of the National Directorates of Meteorology of 

Guinea and Mali.  

The Bafing Makana station in the Bafing watershed has many gaps in the historical time series 

and only includes precipitation data (Table 4). The transboundary nature of the basin and the 

inadequacies of the monitoring network in recent years have led to difficulties in accessing 

available data. Regions of West Africa are generally marked by the challenge of insufficient 

data, due to the scarcity of the ground-based observation network and many gaps in historical 

time series (Chinwendu, 2019; Sambou et al., 2018). Therefore, other data sources must be 

taken into account (Ma et al., 2019). Several studies were conducted in data-scarced or 

ungauged catchments using satellite-based and reanalysis datasets to simulate streamflow with 

hydrological models (Gao et al. 2018). 

➢ Reanalyzed and satellite data 

In recent decades, satellite data and reanalysis data have been among the most attractive 

methods for generating continuous and regionally dispersed climate datasets with high spatial 

and temporal resolutions to replace observed data due to their low cost and high spatial coverage 

(Moges et al., 2022). Satellites have greater spatio-temporal coverage, but their precipitation 

estimates are sensitive to low-intensity precipitation, systematic bias and poor performance 

over snow-covered areas (Ougahi and Mahmood, 2022). Reanalysis products better describe 

large-scale weather systems. Due to their low spatio-temporal resolution, they are unable to 

differentiate spatial variability (Ougahi and Mahmood, 2022).  
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Among the estimates based on reanalysis, the ERA-Interim global reanalysis has been widely 

used as a reference by the climate community (Cucchi et al., 2020). ERA5 is a state-of-the-art 

global atmospheric reanalysis dataset produced by the European Centre for Medium-Range 

Weather Forecasts (ECMWF). The Watch Forcing Data methodology applied to ERA5 

reanalysis data (W-era5) is a new meteorological forcing dataset for land surface and 

hydrological models based on the ERA5 reanalysis.  It provides a long-term record of a wide 

range of atmospheric variables at high spatial and temporal resolutions, such as temperature 

pressure, wind, and precipitation (Cucchi et al., 2020). The W-era5 dataset covers the period 

from 1979 to 2016, with data available for the entire period. It has a spatial resolution of 0.5 

degrees (approximately 31 km). It includes data at various vertical levels of the atmosphere and 

has a high temporal resolution of 3 hours per day (Cucchi et al., 2020). The dataset can be 

downloaded free of charge at https://doi.org/10.24381/cds.20d54e34.  

Several satellite data are available (Bamweyana et al., 2021). The Climate Hazards Group 

Infrared Precipitation with Stations (CHIRPS) is widely used worldwide (Chinwendu, 2019; 

López-Bermeo et al., 2022). The CHIRPS data is an estimate of precipitation from rain gauges 

and satellite observations. It was set up in collaboration with scientists at the Earth Resources 

Observation and Science (EROS) Center to provide comprehensive, reliable and up-to-date 

datasets for several early warning purposes, such as trend analysis and seasonal drought 

monitoring (Bamweyana et al., 2021). It also features gauge-based bias correction that 

differentiates it significantly from unsampled satellite products. In addition, the CHIRPS 

dataset has a long recording period, from 1981 up-to-day, and high spatial resolution (0.05°) 

compared to other products such as the Merged Analysis of Precipitation (spatial resolution of 

2.5° * 2.5°), and the Tropical Rainfall Measuring Mission (spatial resolution of 0.25° * 0.25°). 

The data can be downloaded free of charge at  https://data.chc.ucsb.edu/products/CHIRPSS-

2.0/.  

Satellite and reanalysis precipitation estimates have a significant bias, which must be examined 

before using it in hydrological applications (Sahlu et al., 2017). Their relevance as reference 

dataset due to the limited amount of observed data will be determined by comparing them to 

observed precipitation. Details of observed, reanalysis, and satellite data used in this study are 

presented in Table 4. 

 

https://doi.org/10.24381/cds.20d54e34
https://data.chc.ucsb.edu/products/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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Table 4: Climate data used in the study are from the observed station, satellite-based and 

reanalyzed precipitation products. 

Data Starting year Ending year Time scale 

Observed 
1981 1986 monthly 

2001 2003 daily 

W-era5 1979 2016 daily 

CHIRPS 1981 2022 daily 

 

➢ Global Climate model data (GCM)  
The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b) offers simulations of ten 

GCMs used in the CMIP6 project (Eyring et al., 2016). It presents a bias adjustment and 

statistical downscaling based on W-era5 climate data that differentiates it considerably from 

other GCM of the CMIP6 project. The method used for bias adjustment and statistical 

downscaling in ISIMIP3b was developed by Lange (2020). The projections of these 10 GCMs 

were adjusted and statistically reduced to a horizontal resolution of 0.5 degrees with 

ISIMIP3BASD v2.5.0 as part of Phase 3b of ISIMIP 3b project by Lange (2020). The training 

period used for bias adjustment and statistical downscaling was from 1979 to 2014. The ISIMIP 

provides climate forcing on CMIP6 global climate model simulation sets under three scenarios 

ssp126 (ssp1-RCP2.6), ssp370 (ssp3-RCP7.0) and ssp 585 (ssp5-RCP8.5) over the historical 

period between 1979 and 2014 and climate projections covering the period from 2015 and 2100. 

Model results are available at spatial resolutions of 0.5° x 0.5°. The two climate scenarios, ssp 

126 (moderate scenario) and ssp 370 (medium–high scenario), were chosen because they 

represent a wide range of uncertainties in potential future trajectories. According to 

Meinshausen et al. (2020), the ssp 370 scenario is a medium-high reference scenario in the 

socio-economic family “regional rivalry”, while the ssp 126 scenario corresponds 

approximately to the previous generation of the RCP 2.6 scenario. It describes a "best-case" 

future from a sustainability perspective. Indeed, the ssp1 scenario marks a low mitigation 

adaptation challenge and describes a world marked by strong international cooperation, 

prioritizing sustainable development with a radiative forcing of 2.6 W/m2 in the year 2100. The 

ssp3 scenario (High Adaptation Challenge, High Mitigation Challenge) depicts a fragmented 

world affected by competition between countries, slow economic growth, security-oriented and 

environmentally unconscious policies and industrial production with a radiative forcing of 7.0 
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W/m2 in the year 2100 (Mondon and Imbard, 2013). Climate models from ISIMIP 3b are 

frequently used for climate impact assessments worldwide (Ito et al., 2020; Adigun et al., 2022; 

Golub et al., 2022). They have never been used in the study area, unlike the climate data from 

CORDEX Africa, which has been used and bias-corrected by Mbaye et al. (2018). Therefore, a 

set of ten GCMs from ISIMIP 3b (Table 5) were used under two climate scenarios ssp126 

(moderate scenario) and ssp370 (medium–high scenario) in this study. The dataset can be 

downloaded free of charge at https://data.isimip.org/. 

Table 5: Global climate Model from ISIMIP 3b 

GCM Model Characteristics GCM (forcing) 

CanESM5 Canadian Center for Climate Modelling and Analysis – Canada 

CNRM-CM6-1 Centre National de Recherches Météorologiques (CNRM)and Cerfacs –  

CNRM-ESM2 
Centre National de Recherches Météorologiques (CNRM)and Cerfacs – 

France  

EC-Earth3 Royal Netherlands Meteorological Institute (KNMI) – Pays-Bas  

GFDL-ESM4 The GFDL Earth System Model  

IPSL-CM6A-LR  Institut Pierre-Simon Laplace (IPSL)  

MIROC6 
The Model for Interdisciplinary Research on Climate (MIROC) by The 

University of Tokyo Center for Climate System Research – Japon 

MPI-ESM1-2-HR The Max Planck Institute for Meteorology,  

MRI-ESM2-0 The Meteorological Research Institute Earth System Model Version 2.0 

UKESM1-0-LL U.K. Earth System Model  

 

3.1.2 Hydrological data 

The Organization for the Development of the Senegal River (OMVS) provided daily-observed 

flow data from 1979 to 2017 at Bafing Makana and Dakka Saidou stations. These data were 

used for model calibration and validation. To simulate the management of dams, the dam 

module of SWIM requires information about the characteristics of the hydropower plants and 

the dam. These data were obtained from published reports (Bader, 2001; OMVS, 2011, 2012b). 

The main characteristics of the implemented dams are in Table 6. The efficiency factors for 

hydropower plants are calculated using the maximum head and capacity values of the 

hydropower plant.  
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Table 6:Characteristics of existing and future dams  

Main characteristics of dams Manantali Boureya Koukoutamba  

Maximum dam capacity, including dead 

storage (Mm3) 
12966 5500 3600 

Dead storage (Mm3) 3387 2650 678 

Maximum height of hydropower power 

station [m] 
54.16 54 83.7 

Turbined capacity [m3/s] 455 370 448 

Installed capacity (MW) 205 160.7 294 

Firm yield (MW) 100 52 81.1 

State  Existing Planned Planned 

 

3.1.3 DEM 

Topography in Figure 10 is identified using the MERIT Digital elevation model (Multi-Error-

Removed Improved-Terrain DEM)  (Yamazaki et al., 2017). MERIT DEM is a high-accuracy 

global DEM at 3″ resolution (~90 m at the equator). The DEM was used to delineate the 

watershed, derive sub-catchments, and their stream networks. It has also been used to obtain 

some terrain-specific measurements, such as topological and morphometric properties of the 

land surface terrain and for the LULC mapping. 
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Figure 10:Topographic map of the Bafing watershed 

3.1.5 Soil data 

Soil types and textures in the Bafing watershed, based on the World Harmonized Soil Database 

(HWSD) (http://www.fao.org/geonetwork/srv/en/main.home#soils) are presented in Figure 11.  

The majority of soil types of the Bafing watershed are lithosol and regosol. There are also small 

percentages of cambisol and ferric acrisol. 

http://www.fao.org/geonetwork/srv/en/main.home#soils
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Figure 11: Spatial distribution of soil types (HWSD) 
(http://www.fao.org/geonetwork/srv/en/main.home#soils 

 

3.1.6 Land use/land cover data  
Acquiring satellite images is the first step to carry out land use/land cover mapping. Satellite 

images are digital observational images of the earth's surface assembled from the capture by 

special sensors mounted on satellites.  A satellite image depends on the resolution of the sensor 

and the altitude (i.e. its orbit around the Earth) of the remote sensing satellites (Jensen, 2006). 

Several remote sensing satellites have already been deployed in orbit. The sensors on board in 

these satellites have undergone enormous technological advances, moving from spectral to 

hyperspectral. Spectral and spatial resolutions have also increased gradually. The passage 

frequency on the same observation sites has been reduced from months to date. In addition, 

more and more remote sensing data are being made freely and completely open. Table 7 lists 

the characteristics of satellite images that are frequently used in the LULC mapping. 
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Table 7: Synthesis of sensors used in remote sensing adopted from (Zhu et al., 2018) 

Satellite Launch years Sensors Spatial resolution (m 

Landsat 
1972, 1975, 1978, 1982, 

1984,1993, 1999,2013, 2020 

Panchromatic and 

Multispectral 
15, 30, 60, 100, 120 

Sentinel 1-6 

(ESA) 
2014, 2015, 2016, 2017, 2021 Radar, Superspectral 5--60 

SPOT 
1986, 1990, 1993, 1998, 

2002, 2012 
Spectro-radiometry 2,5, 5, 10, 20 

MODIS 1999, 2002 Spectro-radiometry 250-1000 

QuickBir 2000, 2001 Spectro-radiometry 0,61--2,62 

IKONOS 1999 Spectro-radiometry 0,8--3,2 

 

* SPOT (Système Probatoire d’Observation de la Terre) - MODIS (Moderate-Resolution 

Imaging Spectroradiometer). ESA: European Space Agency. 

In this study, Landsat satellite images were chosen. It is the oldest of the earth observation 

programs since 1972. It have an extensive archive of images over a long period; approximately 

more than 30 years (Woodcock et al., 2008). The data are freely available and have an 

appreciable spatial resolution for a wide range of surfaces (snow, soil, water, vegetation). 

Actually, it offers a sufficient level of detail to identify the characteristics of the land cover, 

such as mapping and analysis of water bodies, vegetation phenology, agriculture, forest 

monitoring, surface temperature, evapotranspiration, hydrology (Wulder et al., 2019). Table 8 

shows the generations of Landsat characteristics and specifications. 
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Table 8 : Description of Landsat sensors adapted from (Wulder et al., 2019)  

Landsat 

sensor 
Wavelenght 

Launch years Frequency 

of passage 

Resolution 

Landsat 1-3  
Multispectral Scanner 

(MSS) 

1972-1983 (1-3) 

1975-2013 (4-5) 
18 days 60m 

Landsat 4-5 
Multispectral Scanner 

(MSS) 
1975-2013 18 days 60m 

Landsat 4 et 5  Thematic Mapper ™ 1975-2013 16 days 30m, 120m (TIR) 

Landsat 7  
Enhanced Thematic 

Mapper Plus (ETM+) 
since 1999 16 days 

15m (P), 60m 

(TIR) 

Landsat 8  
 Enhanced Thematic 

Mapper Plus (OLI/TIRS) 
since 2003 17 days 

30m, 15m (P), 30m 

(C), 100m (TIR1, 

TIR2) 

 

Google Earth Engine (GEE) provides surface reflectance images that are atmospherically 

corrected and improve the detection of changes (Wahap and Shafri, 2020). The choice of 

satellite images is based on four criteria:  

• spatial resolution,  

• spatial coverage,  

• available years,  

• cloudiness (minimum) (Horning, 2004; Martignac, 2005).  

The images selected according to these criteria are presented in Table 9.  
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Table 9:Characteristics of Landsat images selected for the LULC mapping. 

Dataset Satellite Sensor Spatial 

resolution 

Date of 

acquisition 

Band 

Image 1 USGS Landsat 5 

(Surface Reflectance 

Tier 1) 

MSS/TM 30 m 1986 Multispectral 

Image 2 USGS Landsat 5 

(Surface Reflectance 

Tier 1) 

MSS/TM (Surface 

Reflectance Tier 1) 

30 m 2006 Multispectral 

Image 3 USGS Landsat 8 

(Surface Reflectance 

Tier 1) 

OLI/TIRS (Surface 

Reflectance Tier 1) 

30 m 2020 Multispectral 

 

 

The global human settlement data have been downloaded from the European Commission 

(https://ghsl.jrc.ec.europa.eu) to identify settlement zones for the sampling. Ground truth 

samples were collected using Google Earth. The Digital Elevation Model, slope, distance from 

the road, and distance from the river (Figure 12) were included as supplementary input data for 

the LULC modelling.  

 

Figure 12:Explanatory variables used for the calibration in the land use/land cover change 
modelling. 
 

 

https://ghsl.jrc.ec.europa.eu/
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3.2 Materials 

3.2.1 Hydrological modelling 

3.2.1.1 Hydrological model selection criteria 

With the increasing number of hydrological models, the choice of a model depends on well-

defined research objectives. In the case of analyzing the impact of climate change and LULC 

change on water and hydropower generation, the following criteria should be considered: 

− A model that incorporates the hydrological space-time variability of input data, 

− A model that can simulate the hydrological response continuously over a long period to 

consider the projection of climate change,  

− A model that can consider the hydrological characteristics of surface state to represent 

the physical processes of flows over the watershed (LULC change), 

− A model that has not yet been applied or partially applied to the study area. 

− A model that integrates dam management, 

− An accessible and trainable model. 

In addition, the degree of complexity and the large quantity of input data is also essential to 

consider. 

In the context of the Bafing watershed, several models and approaches have been tested for 

flow simulation. Faty (2017) used the Mike SHE model to study hydrological phenomena and 

changes in surface states in the Bafing watershed. The GR4J model has been calibrated and 

validated on the Bafing watershed (Sambou et al., 2003; Bodian, 2012). The SWAT model was 

used to assess the impact of climate change on water resources and the management of the 

Manantali dam (Sane et al., 2020). HBV-Light was used to have the hydrological forecasts in 

the Bafing watershed (Ndione et al., 2020).  In the framework of this study, the SWIM model 

(Soil and Water Integrated Model), developed by Krysanova et al. (2005), has been selected 

because it corresponds to the predefined criteria and has not yet been applied to the Bafing 

watershed.  

Over the past decade, SWIM has been tested on intermediate and large basins for hydrological 

processes. Krysanova et al. (2015) synthesized the various research results on hydrological 

processes with SWIM in their studies. They highlighted the broad scope of the SWIM model 

(water quality, groundwater, flood, irrigation, wetlands, soil moisture, erosion, crop yield, forest 
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dynamic, climate change impact on floods, climate change impact on crop yields, climate 

change impact on water, land-use change impact on water). For example, the SWIM model has 

been applied to the Grand Ethiopian Renaissance Dam to assess the management scenarios and 

their impacts under current and future climates. Furthermore, Liersch et al. (2017)  investigated 

the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment 

using the SWIM model. Koch et al. (2020) simulate the effects of climate change on 

hydrological processes and water resources management with SWIM model in Semi-arid 

regions. The authors laid the emphasis on describing problems and generating solutions when 

calibrating and validating the eco-hydrological model SWIM for semi-arid areas in the example 

of the Pajeú watershed in northeastern Brazil. Wortmann et al. (2014) investigate the glacier-

lake outburst floods at the Tarim River in northwest China. They experimented the SWIM 

model on water resources and highlighted the influences on the downstream water balance. 

Lobanova et al. (2016) address the effects of projected climate change on the water availability 

in the Tagus River basin and the potential changes on hydropower generation of three important 

dams. The SWIM model allowed them to simulate the flow and dam management. 

3.2.1.2 Presentation of the SWIM model 

The Soil and Water Integrated Model (SWIM) is a semi-distributed, continuous eco-

hydrological model based on physical equations and empirical methods (Krysanova et al., 2005, 

2015). It is built on the SWAT and MATSALU tools, two previously invented models. The 

SWIM offers a complete GIS tool for linked modelling of hydrological processes, vegetation 

and water quality, as well as for analyzing the effects of climate change and land use change on 

these systems at the regional level. SWIM simulates hydrological processes, vegetation growth, 

erosion, and nutrient dynamics at the river-basin scale. It incorporates relevant natural elements, 

such as climate, hydrology, vegetation, nutrient transport, land use/land cover management and 

water management (Figure 13). It is composed of several modules such as reservoir and crop 

rotation. The modelling procedure is based on a three-step process. At first, water, vegetation 

growth and nitrogen dynamics are determined for every hydrological response unit (HRU). 

Then, the outputs from the HRU, especially the lateral water and nutrient flows are averaged to 

calculate the sub-basin output. Finally, the routing procedure is applied to the sub-basin outputs, 

considering transmission losses. 
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Figure 13: Flow chart of the SWIM model component 

3.2.1.3 Spatial disaggregation of the SWIM model 

The SWIM model uses a three-level disaggregation scheme composed of basin, sub-basins, and 

HRUs inside sub-basins (Figure 14). The model considers the watershed as an area that is 

further divided into sub-basins and HRUs (Krysanova et al., 2021). Watershed boundaries are 

delineated by a DEM that represents the terrain's topography. Due to spatial connections 

between sub-basins, water flows from upstream to downstream to the outlet in a sub-basin. The 

river system has branches present in each sub-basin to ensure drainage. SWIM links each 

branch to create the river network extending over the entire watershed.  Next, the sub-basins 

are divided into HRUs. Overlaying elevation, slope, LULC, sub-basins, and soil files create 

these HRUs. HRHs are the main calculation elements for the simulation of hydrological 

processes. With regard to biophysical processes, HRUs are considered as units with the same 

features. There is no interaction between HRUs. Indeed, an HRU is typically a group of 

disjointed sub-basin units with a distinct land use and soil type. It is reasonable to assume that 

an HRU will behave hydrologically in the same way throughout the sub-basin. The water 

balance is calculated once the watershed is spatially organized in SWIM (Krysanova et al., 

2021). 
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Figure 14:Spatial disaggregation in SWIM (Krysanova et al., 2005, 2015) 

 

3.2.1.4 Hydrological processes 

Hydrological processes involved in SWIM model are based on the water balance equation (7), 

taking into account precipitation, evapotranspiration, percolation, surface runoff and 

groundwater runoff for the soil column subdivided into several layers (Figure 15). SW (t + 1) = SW(t)  + PRECIP –  Q − ET − PERC –  SSF                                                             (7) 

Where SW (t) is the soil water content in the day t, PRECIP – precipitation, Q – surface runoff, 

ET -evapotranspiration, PERC – percolation, and SSF subsurface flow.  

Precipitation is an input data, with the assumption that it can vary between sub basins. Still, it 

is equally distributed within each sub basin. The surface runoff, evapotranspiration, percolation, 

and subsurface flow appear as in the figure below: 
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Figure 15: Flow chart of hydrological processes in soil implemented in SWIM (Krysanova et 
al., 2021)  

➢ Surface runoff (Q)  

Surface runoff is defined as the flow occurring along the slope surface and begins when the soil 

is already saturated with water (Leye, 2023). The model simulates the surface runoff volumes 

and peak runoff rates using the daily precipitation as input. The method used to calculate the 

runoff volume is a modification of the Soil conservation service (SCS) curve number method 

(Leye, 2023). It is defined by the following equation: Q =  (PRECIP−0.2 ×SMX)2(PRECIP+0.8×SMX  if  PRECIP 0.2 × SMX                                                                    (8)                                      

Q =  0, if PRECIP ≤ 0.2 × SMX  

Where Q is the daily runoff in mm, PRECIP is the daily precipitation in mm, and SMX is a 

retention coefficient. The retention coefficient SMX and curve number (CN) are connected with 

the following equation: 𝑆𝑀𝑋 = 254 ∗ (100𝐶𝑁 − 1)                                                                                               (9) 
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The CN is a dimensionless parameter. The values of CN are related to land use types, hydrologic 

soil groups and management practices. Peak Runoff Rate is calculated by using the modified 

Rational formula (Krysanova et al., 2021). 

➢ Percolation (PERC) 

Percolation is defined as the entry of water into the soil layer (Leye, 2023). In SWIM, a storage 

routing technique is used to simulate percolation through each soil layer. It is defined by the 

equation (10) (Krysanova et al., 2021) 

𝑃𝐸𝑅𝐶𝑖 = 𝑆𝑊𝑖 ∗ (1 − exp ( ∆𝑡𝑇𝑇𝑖))                                                                              (10)        

where PERC is the percolation rate in mm d-1, SWi are the soil water contents at the beginning 

and end of the day in mm, ∆t is the time interval (24 h), and TTi is the travel time through layer 

i in hour, d is the day. 

➢ Potential Evapotranspiration (PET) 

Potential Evapotranspiration (PET) is a collective term encompassing all the processes by 

which water on the Earth's surface is converted into water vapour (Leye, 2023). This includes 

canopy evaporation, transpiration, sublimation and soil evaporation. The PET is the rate at 

which evapotranspiration occurs from a large area completely and evenly covered with growing 

vegetation that has access to an unlimited soil water supply. Evapotranspiration is calculated in 

SWIM with the Priestley-Taylor method, requiring only solar radiation, air temperature, and 

elevation as inputs (Krysanova et al., 2021). The Priestley-Taylor method calculates potential 

evapotranspiration (Eta) as a function of net radiation as follows: 𝑃𝐸𝑇 = 1.28 ∗ (𝑅𝐴𝐷𝐻𝑉  ) ∗ ( 𝛿𝛿+𝛾)                                                                                        (11)            

where is PET is the potential evaporation in mm, RAD is the net radiation in MJ m-2, HV is the 

latent heat of vaporization in MJ kg-1 , δ is the slope of the saturation vapour pressure curve in 

kPa C-1, and γ is a psychrometer constant in kPa C-1. 

➢ Lateral sub-surface flow (SSF) 

Lateral subsurface flow is determined simultaneously with percolation. The SWIM estimates 

the subsurface flow with the kinematic storage model (Krysanova et al., 2021). 
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➢ Groundwater flow 

The percolation from the soil profile is supposed to recharge the shallow aquifer. The surface 

runoff, the lateral subsurface flow from the soil profile, and the return flow from the shallow 

aquifer supply the stream flow.   

The Medema and Rycroft method (Krysanova et al., 2021) is used to determine groundwater 

contribution to streamflow: 

𝐺𝑊𝑄 = 8 × 𝐾𝐷 ×𝐺𝑊𝐻𝐷𝑆2                                                                                                    (12)     

where GWQ is the return flow or groundwater contribution to streamflow, KD is the hydraulic 

conductivity of groundwater in mm d-1, DS is the drain spacing in m, and GWH is the water 

table height in m. 

➢ River Routing 

Once SWIM has determined the flows of water, sediment and nutrients to the main channel, the 

flows are routed through the network of streams in the watershed using the Muskingum flow 

routing method (Krysanova et al., 2021). 

3.2.1.5 Presentation of the dam module 

The SWIM reservoir module, a conceptual representation of dam management processes 

developed by Koch et al. (2013), was created to consider existing or future dams in water 

management (Figure 16). The dam module provides advanced functions to evaluate 

hydropower potential, analyze storage effects, provide water resources for various users, and 

simulate flood protection. Operation rules control the reservoir release. These rules are 

separately defined for the filling period and regular operation. Actual evapotranspiration from 

the reservoir area is calculated using the weighted sums of evaporation from the open water 

surface of the lake and actual evapotranspiration from the land area. The daily seepage rate is 

calculated as a user-defined fraction of the current total storage volume. The lakes of the 

reservoirs are considered as a sub-basin in SWIM. The model incorporates watershed dams as 

distinct, individual "sub-basins" into the sub-basin map. The reservoir model is called in the 

SWIM model during the routing procedure. If the routing routine reaches a reservoir-sub-basin, 

the reservoir routine is called instead of the “normal” sub-basin routine and the simulation is 

carried out according to the management options set. SWIM has provided three management 

options to simulate dam management rules: 
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(i) Variable daily minimum discharge to meet environmental targets downstream under 

consideration of maximum and minimum water levels in the reservoir, 

 ii)  Daily release based on firm energy yield by a hydropower plant at the reservoir (the release 

to produce the required energy is calculated depending on the water level 

iii) Daily release depending on water level (rising/falling release with increased/falling water 

level), depending on the objective of reservoir management. 

The reservoir release for option (ii) is used to simulate hydropower generation (Koch et al., 

2013). The hydropower generated per day is calculated with the equation (13):  𝑃  =   𝑄 × ρ ×  g × H ×  η   (𝐾𝑊ℎ)                     (13)        
 

where P is the electricity produced (kW), Q is the flow rate through the turbine (m³/s), H is the 

water head (m), ρ is the density (kg/m3) (Water = 1000), g is the acceleration of gravity (=9.81)  

(m/s²) , η = global efficiency ratio (usually between 0.7 and 0.9). 

 

Figure 16: Overview of the separation of reservoirs in different compartments in SWIM 
(Krysanova et al., 2021)  
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3.2.1.6 Dam integration into SWIM model 

To integrate dam management as a module into SWIM, the outlet of the dam must be located 

at the same position as one outlet of a SWIM sub-basin. This must be safeguarded in the pre-

processing. To avoid multiplying the calculation of precipitation and evaporation over the dam 

surface, these hydrological response units are turned off. During the routing process, the SWIM 

model calls the dam module. The dam routine is called and the simulation is run in accordance 

with the management settings set if the routing routine reaches a dam-sub-basin outlet. The 

outflow is sent through the following downstream sub-basin after the dam has been simulated. 

Integrating new dams to account for potential changes in the water infrastructure is possible. In 

this instance, the dam is empty when the simulation first begins. A prerequisite for 

implementing and using the dam module is the model with (very) good results for calibration 

and validation periods. A more detailed description of SWIM is available in its manual with a 

user guide (Koch and Liersch, 2021).  

3.2.2 Google earth engine (GEE) platform 

The Google Earth Engine (GEE) is an open-source, cloud-based geospatial processing platform 

that provides access and seamless processing of large-scale data analyses from freely available 

satellite imagery (Gorelick et al., 2017; Shelestov et al., 2017). GEE is the most popular big 

geo data processing platform, which provides a set of state-of-the-art classifiers for pixel-based 

classification used for LULC mapping (Yang et al., 2022). The main advantage of GEE is the 

close link between the data and the algorithms, both accessible via an Application Programming 

Interface (Gorelick et al., 2017; Shelestov et al., 2017). Due to its accessible and user-friendly 

design, it has grown in popularity recently (Jampani et al., 2020; Dubertret et al., 2022; Nasiri 

et al., 2022; Ougahi and Mahmood, 2022).  

3.2.3 Land change modeller 

The Land Change Modeller (LCM), developed by Clark Labs at the University of Worcester 

(Eastman and Toledano, 2018), is an innovative land use planning and decision support system 

fully integrated with TerrSet software. The LCM is a collection of tools for the rapid assessment 

of change, evaluation of gains and losses, net change, persistence and recognition of transitions 

between LULC classes in statistical and graphical representations (Eastman and Toledano, 

2018). It uses historical LULC changes to model empirically the relationship between land 

cover transitions and explanatory variables to map future changes. The basic principle of this 

module is to assess the changing trend from one land use category to another. It uses the 
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influencing factors such as roads, slope, aspect, and soil type, to predict future land use 

scenarios based on the previous change trend (https://clarklabs.org/terrset/land-change-

modeller). Compared to alternative modelling approaches, it have the advantage of being able 

to simultaneously learn and replicate many surface state transitions while integrating a variety 

of different parameters into a single operation (Dang and Kawasaki, 2016). This model predicts 

LULC change from thematic raster images with the same number of classes in the same 

sequential order. LCM was used to simulate and predict future changes in LULC. 

3.3 Methodology 

The overall methodology includes precipitation products (W-rea5, CHIRPS) validation, GCM 

performance assessment, climate change projection, LULC change monitoring and prediction, 

hydrological modelling, and analysis of the hydrology and hydropower potential response to 

climate change and LULC changes. 

3.3.1 Assessment of Satellite-Based and Reanalysis Precipitation products to reproduce 
the observed precipitation in the Bafing watershed. 

Due to the limited number of observed quality data in the Bafing watershed, the satellite based 

(CHIRPS) and reanalysis (W-era5) precipitation datasets were first compared to the observed 

data. This exercise was conducted to determine the most appropriate product to use as a 

reference data set. The comparison was first made using statistical measures, namely Pearson 

Correlation Coefficient (R2), Percentage bias (Pbias), Root Mean Square Error (RMSE) and 

Nash-Sutcliffe coefficient efficiency (NSE) (Table 10) on a monthly and annual scale. 

According to Sambou et al. (2018), they are very useful for evaluating estimates. 

▪ Nash-Sutcliffe coefficient efficiency (NSE) (14): NSE is a standardized statistic, that  

indicates the degree of correspondence between observed and simulated data (Nash and 

Sutcliffe, 1970). 

▪ The Pearson correlation (R2) (15): R2 evaluates the statistical association between two 

continuous variables. It is considered the best method for determining the relationship 

between the variables of interest because it is based on the covariance method. The 

values of the coefficients range from +1 to -1, where +1 indicates a perfect positive 

relationship, -1 indicates a perfect negative relationship, and 0 suggests that no 

relationship exists (Kanda et al., 2020). 

▪ Percentage bias (16): Pbias measures the average tendency of simulated data to be larger 

or smaller than their observed counterparts (Lamontagne et al., 2020). The optimal value 
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of Pbias is 0, with low magnitude values indicating an accurate simulation of the model. 

Positive values indicate model underestimation bias and negative values indicate model 

overestimation bias (Lamontagne et al., 2020).  

▪ Root Mean Square Error (RMSE) (17): RMSE is considered one of the best indicators 

to summarize model performance. Its value also varies between 0 and +∞. Again, 

models estimates with RMSE values closer to 0 are considered better (Ali and Abustan, 

2014) 

▪ The Taylor diagram (Taylor, 2001) was used to get a  visual representation of the 

comparison in correlation, root mean square error and standard deviations.  

Then, analyses of the seasonal cycle were carried out on a monthly scale for the historical period 

1979-2014.  
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Table 10: Statistical metrics used in this study. Pobs stands for the observed rain-gauge, Pp 

stands for the precipitation products (W-era5, CHIRPS), n refers to the sample size. 

Statistical metric Formula  Value range 
Performance 

classification 

 

NSE 1 − ∑(Pobs − Pp)2∑(Pobs − P̅obs)2 

 0.75 ≤ NSE < 1 0.65 ≤ NSE < 0.75 0.50 ≤ NSE < 0.65 0.40 ≤ NSE < 0.50 NSE ≤0.4 

Very well  

Good  

Satisfactory 

Acceptable 

Not satisfactory 

 

 

 

(14) 

Pearson correlation 

(R2) 

∑((Pobs − P̅obs)(Pp − P̅p))2∑(Pobs − P̅obs)2 ∗ ∑(Pp − P̅p)2 R² > 0.5 

R2 values >0.5 

acceptable for 

simulation 

 

(15) 

Percentage bias 

(Pbias) 
∑(Pobs − Pp) ∗ 100∑(Pobs)  

 PBIAS < ±10 ±10 ≤ PBIAS < ±25 ±10 ≤ PBIAS < ±25 ±25 ≤ PBIAS < ±40 PBIAS ≥ ±10 

 

 

Very well  

Good 

Satisfactory 

Acceptable          

Not satisfactory  

 

 

(16) 

Root Mean square 

error (RMSE) 
√∑(Pobs − Pp)²n  

0 ≤ to < ∞ 
0 indicates perfect 

fit  

(17) 

 

 

3.3.2 Assessment of the performance of 10 GCMs from ISIMIP 3b 

The evaluation of the performance of climate models consists of analyzing their ability to 

reproduce the reference climate. Assessment is complex because climate simulations are not 

intended to reproduce or predict weather conditions for a given day, month or year (Liersch et 
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al., 2018). Therefore, only statistical variables averaged over approximately 30 years can be 

used for comparison (Liersch et al., 2018). In the first stage of the assessment, the precipitation 

and temperature of the 10 GCMs from  ISIMIP were compared to the reference data using 

statistical measures (NSE, R2 , Pbias, RMSE), the Taylor diagram (Taylor, 2001), and the 

seasonal cycle. The assessment was carried out on a monthly scale for the historical period 

1979-2014. The Mann-Kendall statistical test has been used as an additional criterion to see if 

GCMs from ISIMIP3b can reproduce the observed trend in annual precipitation and 

temperature. The nonparametric Mann-Kendall test is used to determine whether an identifiable 

trend in a time series is statistically significant (Faye et al., 2015).  Student's t-tests and the 

Mann Kendall (MK) test were performed at 95% confidence intervals to determine the 

statistical significance of climate change signals period 1979-2014 for temperature and 

precipitation.  

The test statistic is given by the equation 18 : Z = ∑ ∑ sgn(xj − xi)nj=i+1n−1i=1                      (18) 

With  

sgn(xj − xi) =(   1 if (xj − xi) > 0   0 if (xj − xi) = 0−1 if (xj − xi) < 0                               (19) 

It is accepted that:  

E(S) =0             (20) 

Var(S) =n(n−1)(2n+5)18            (21) 

Cq = ∑ tq q(q−1)(2q+5)18nq=1           (22) 

The statistical variable Z is given by:   

[  
 Z = S−1√var(S)  if S > 0Z = 0            if S = 0Z = s+1√var(S)  if S < 0                                                                   (23) 

The regression line estimator, called Sen's slope, is used to determine the magnitude of the trend 

when the null hypothesis  "H0: no trend" of the Mann Kendall test is rejected (Abdulkareem 

and Sulaiman, 2016). A positive value S denotes an increase trend, and a negative value 

indicates a downward trend (Mishra et al., 2014). The slope can be estimated using a simple 
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nonparametric procedure. It consists of calculating the slopes of all the data in the series 

according to equation 24. Qj = 𝐱𝐣−𝐱𝐢𝐣−𝐢               (24) 

where xj et i   with j > i.  
The median slope is obtained by one of equations 25 or 26.  β = Q(N+1)2              (25) 

β = 12 (QN2 + Q(N+2)2 )            (26) 

Under the normality assumption of the median slope series, the ranks and ascending order of 

the median slopes corresponding to the limits of the confidence interval at the significance level 

are calculated by equations 27 and 28. M1 = N−Cα2                  (27) M2 = N+Cα2               (28) 

Where Cα is obtained by equation 29 Cα = Z1−α2√Var(S)             (29) 

3.3.3 Mapping and Projection of Land use/land cover change 

Our methodological approach is presented in three steps. The first step is to establish the LULC 

maps of 1986, 2006 and 2020. The second approach is to setup the model and the third step is 

to predict the land use/land cover map for the year 2050.  

3.3.3.1 Land use and land cover mapping 

The methodological approach for LULC mapping was divided into three significant steps: 

Landsat image processing, supervised classification, and classification accuracy. This study 

used the GEE editor (Gorelick et al., 2017; Shelestov et al., 2017) to build the LULC map with 

individual scripts for each year. The custom scripts combine several components from official 

Google resources and other references. Figure 17 describes the general procedures used for the 

LULC mapping. Details will be provided in the following sections. After the LULC mapping, 

the change detection analysis was performed to observe the changes between two-time scales. 
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                       Figure 17: The procedures used for the LULC mapping. 

3.3.3.1.1 Image preprocessing  

Pre-processing is essential to remove innate noise that could affect classification before using 

satellite data to produce a LULC map (Thiam et al.,2022). Atmospheric corrected Landsat 

Surface Reflectance Tier 1 images available for Landsat OLI/TIRS and TM sensors were 

gathered in GEE for the years of interest (1986, 2006 and 2020). The collection of annual 

Landsat images with a cloud cover of less than 30% was chosen using cloud cover function in 

GEE. To "reduce" the collection of Landsat images to a single output image that represents the 

median of the images, the median ee.Reducer function on GEE was used (Noi Phan et al., 2020; 

Dubertret et al., 2022). 
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3.3.3.1.2 Construction of features  

The spectral and topographic feature sets were used as input features for LULC classification 

algorithm (Table 11). Blue, green, red, NIR, and SWIR spectral image bands were selected as 

spectral features because they can distinguish comparable spatiotemporal phenomena, 

enhancing the separability of LULC classes (Thiam et al., 2022). Additionally, numerous 

studies have demonstrated that using spectral features from indices as input features for 

classification will significantly increase the accuracy of LULC. Examples of these indices 

include the Normalized Difference Vegetation Index (NDVI), Normalized Water Difference 

Index (NDWI), and Normalized Difference Accumulation Index (NDBI) (Kulkarni & Vijaya,  

2021; Tsai et al., 2018). The NDVI allows determining the vegetation's features. Information 

on the properties of water bodies is available from the NDWI. The artificial characteristics of 

the earth's surface can be obtained from the NDBI. Additionally, topographical features such 

as altitudes and slopes improve the precision of land cover classification (Yang et al., 2021).  

Hence, the elevation and slope data were extracted from the DEM as features for LULC 

classification. 

Table 11:The spectral and topographic features 

Type of feature    Feature Name 

Spectral Bands Blue, green, red, NIR, SWIR 

Indices NDVI, NDBI, NDWI   

Terrain                                                               Elevation, slope 

 

NIR=near infrared (NIR), SWIR (shortwave infrared) 

NDVI = NIR − RedNIR + Red                                                                                                                      (30) 

NDWI = Green − SWIRGreen + SWIR                                                                                                             (31)  

NDBI = SWIR − NIRSWIR + NIR                                                                                                                  (32) 

3.3.3.1.3 Classification  

Image classification aims to categorize or label a satellite image. The satellite image can include 

pixels, pixel density, distributions, features, histograms, color distribution, etc. LULC 

classification consists of classifying LULC into different classes (crops, forests, roads, 

residential or industrial areas) using the feature of the spatial-spectral band of the image (Wang 
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et al., 2022). The success of any image classification depends on a number of factors, including 

selecting an appropriate classification algorithm (Lu and Weng, 2007). LULC classification 

algorithms can be classified into different groups of classifiers based on various criteria. 

Depending on the knowledge of the analyst in the area, one can distinguish between supervised 

classification algorithms and non-supervised classification algorithms. In unsupervised 

classification, an algorithm is used to identify spectral classes, and the analyst assigns the 

identified spectral classes to a LULC class (Richards, 2006). With supervised classification, the 

analyst guides the classification procedure by selecting areas in the image called drive zones to 

represent the typical spectral classes representing the surface state (Richards, 2006).  

Classification algorithms can also be classified into parametric and non-parametric. Parametric 

classification is based on the assumption that input data for each class are normally distributed, 

while nonparametric classification is not constrained by any statistical distribution (Wang et 

al., 2022).  

Classification algorithms can also be classified into pixel-based and object-based algorithms 

(Pandey et al., 2021). Although pixel-based methods focus primarily on pixel independence in 

classification, they have some limitations for classifying mixed entities. In contrast, object-

based methods classification is done based on objects instead of a single pixel (Pandey et al., 

2021). Thus, this approach may not be practical for detailed LULC classification. Consequently, 

pixel-based classification is more famous for LULC classification (Wang et al., 2022).   

Advanced classification algorithms such as  Regression Trees (CART), Random Forest (RF), 

kNearest Neighbor (k-NN), Support Vector Machine (SVM), Artificial Neural Network 

(ANN), Multinomial Logistic Regression (MLR), Maximum Likelihood Classification (MLC), 

and Bayesian classifiers have received a lot of attention in the classification of LULC mapping 

recently (Ma et al., 2019; Macarringue et al., 2022). To find the best and most accurate 

classification algorithm for LULC mapping, researchers such as Kulkarni and Lowe (2016) and 

Talukdar et al. (2020) have done comparative studies between several algorithms. According 

to their findings, Random Forest is the best for the LULC classification compared to other 

classifiers. RF is a pixel-based non-parametric classifier method that enables supervised 

classification. RF is widely used in LULC classification for the ensuing reasons (Amini et al., 

2022; Noi Phan et al., 2020): 

(1) effective management of outliers and noisy datasets;  
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(2) satisfactory results with multi-source and high-dimensional datasets; 

(3) superior accuracy to other widely used classifiers, like SVM or MLC in many applications; 

(4) speeding up processing by concentrating on essential factors.  

Moreover, the Random forest is suitable for classifying hyper-spectral data, where the curse of 

dimensionality and highly correlated data pose significant issues to other available 

classification methods (Biau and Scornet, 2016; Fawagreh et al., 2014). Hence, this study used 

RF to produce LULC maps for 1986, 2006, and 2020. This method combines the sampling 

approach and random feature selection to build a collection of decision trees with a controlled 

variation. RF is a method using decision trees classifiers {h(x,Hk), k = 1,...,} where the "Hk" 

stands for independent identically distributed random vectors and "x" stands for an input pattern 

(Breiman, 2001). In training, RF creates multiple CART-like trees, each trained on a 

bootstrapped sample of the original training data. It establishes a split by examining a randomly 

selected subset of the input variables (Gislason et al., 2006). In the classification process, each 

tree gives a unit vote for the most popular class at input x,  and the classification of each tree is 

referred to as a "vote" for that class (Kulkarni and Lowe, 2016). A complete mathematical 

description of RF is presented by Breiman (2001). Two important parameters must be optimized 

to get more accurate results: the number of trees (Ntree) generated, and the number of features 

randomly chosen to divide each node (Mtry). Using the results of the data pretests, the number 

of trees was set to 100, and Mtry was set to the default value (square root of the total number 

of features).  

Five LULC classes were used in the classification, namely (1) settlement, (2) water, (3) 

vegetation, (4) cultivated area, (5) bareground. The choice of these five classes was based on 

information from key stakeholders in the watershed and in line with previous regional studies, 

which used comparable classes (Faty, 2017; Thiam et al., 2022). The details are specified in 

Table 12. 
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Table 12: Description of the five classes used in the study. 

Class Name Description 

1 Settlement The human (urban and rural) settlement, housing, roads, transport, mining, 

and industry.  

2 Water Rivers, streams, ponds, lakes, dams, estuaries, and wetlands. 

3 Vegetation Forest, savannah and riparian vegetation, Herbaceous Rangeland, Shrub and 

Brush Rangeland. 

4 Cultivated area Agriculture area (irrigated crops, rainfed crops), orchards and Pasture. 

5 Bareground  Deserts, sand fields, exposed bareground rock, sand and temporary 

bareground ground, transitional. 

 

The training sample selection was done manually by following the probability sampling method 

based on available references and aiming for overall precision as an estimation goal (Olofsson 

et al., 2014). The probabilistic sampling method can be performed in two steps: sampling design 

and response design (Szantoi et al., 2021). In practice, the number of samples has been increased 

due to the breadth and complexity of the environment. Some classes, such as water, and 

cultivated area, cover a small area in the region. Therefore, fewer samples were taken. The 

spatial distribution of samples was determined using a combination of random sampling and 

expert knowledge. The number of good samples was studied experimentally by running the 

script repeatedly to obtain acceptable visual and statistical results. These samples were used as 

regions of interest (ROI) to train the RF. Each ROI was given a certain LULC class designation. 

70% of the sample was used for training, while 30% was used for internal validation.  

 3.3.3.1.4 Classification accuracy 

In the remote sensing application, evaluating the accuracy of the classification results is crucial. 

There are many methods used to carry out this verification. Many researchers recommend using 

a confusion matrix (Table 13) to represent accuracy (Congalton, 1991; Olofsson et al., 2014; 

Szantoi et al., 2021). The confusion matrix reveals information on the overall accuracy O, user’s 

accuracy 𝑈, producer’s accuracy (Szantoi et al., 2021; Foody Giles 2022). The overall accuracy 
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is the sum of perfectly classified pixels divided by the total sample size of pixels. The producer’s 

accuracy informs the analyst (producer) of the percentage of correctly classified LULC 

compared to the real world. The user’s accuracy measures errors of commission, which shows 

the probability of a classified pixel matching LULC type’s user of its corresponding real-world 

location (Foody, 2020; Rwanga and Ndambuki, 2017). Therefore, the overall accuracy (O), 

user’s accuracy (𝑈), producer’s accuracy (P) were used to assess the reliability of the 

classification. In addition, the agreement's kappa coefficient (K) was used to control only those 

pixels that may have been correctly classified by chance (Szantoi et al., 2021; Foody, 2022). 

The values of these indices range from 0 (indicating disagreement) to 1 (indicating perfect 

agreement)). A value above 0.80 for the K is considered satisfactory (Stehman, 2014). 

 

Table 13: Typical confusion matrix for classification validation  (This Table has been adapted 

from (Roland, 2021)) 

Classes 1 2 … k … q Total 

1 N11 N12 … N1k … N1q N1+ 

2 N21 N22 … N2k … N2q N1+ 

… … … … … … … … 

K Nk1 Nk2 … Nkk … Nkq Nk+ 

… … … … … … … … 

q Nq1 Nq1 … Nqk … Nqq Nq+ 

Total N+1 N+2 … N+k … N+q N 

 

 Oi = ∑ Pjjqj=1                                                                                                                             (33) Ui = PiiPi                                                                                                                                          (34) 

pj = PjjPj                                                                                                                                           (35) 

k =  𝐾𝑖  =  N∑ Pii   − ∑ (Pi+ ∗ P+i)qi=1qi=1N2 −∑ (Ni+ N+i)qi=1                                                                                                     (36)                                                                    

P = nombre de pixel  
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3.3.3.1.5 Change detection analysis 

After the classification accuracy, the change detection analysis was done between the LULC 

maps obtained. Various change detection techniques have been developed throughout the years, 

namely layer arithmetic, direct classification, change vector analysis, transformation, and 

hybrid change detection (Tewkesbury et al., 2015). Post-classification change detection is one 

of the most established and widely used change detection methods applicable to Landsat class 

imagery (Tewkesbury et al., 2015). The fundamental advantage of this technique is that the 

basic classification and change transitions are explicitly known (Lu et al., 2004). LULC maps 

of the different dates were used to calculate the area of each LULC class and observe the 

changes that occurred (Zurqani et al., 2018).  In addition, indicators such as spatial trend and 

the annual rate of LULC were then used for change detection and spatio-temporal 

quantification. From these pixel-based classification result images, the area of each LULC class 

and the rate of change were calculated using formulas (37), (38) and (39). 

 𝑆𝑖 (%) =   SiSt ∗ 100%                                                                                                              (37) 𝑆𝑖  =  Si t1 −  Sit2                                                                                                                   (38) 𝑆𝑖𝑟  =  ( Sit1Sit2   − 1) ∗ 100%                                                                                                                                                       (39) 

where Si denotes the area of LULC type i, St denotes the total study area, and Si (%) represents 

the percentage of each LULC type area. Sit1 and Sit2 refer to the whole site of LULC type i in 

specific years 1 and 2, respectively. Sir refers to the rate of change between the specified years. 

3.3.3.2 Land use change modelling and future scenarios  

Predicting and evaluating potential LULC is important for community leaders scientists, and 

natural resource managers to support land use planning and policy (Pocewicz et al., 2008). It is 

crucial to understand LULC change and how it may change in the future. A literature review 

showed that remote sensing and Geospatial Information System (GIS) techniques and the driver 

variables are the most widely used method for detecting and predicting LULC change ( Singh 

et al., 2015; Liping et al., 2018; Wang et al., 2021). Over the last two decades, many LULC 

models have been developed to understand, evaluate, and project the future LULC change at 

spatial and temporal scales (Lambin et al., 2001).  
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Models can be static or dynamic (Agarwal et al., 2002; Lantman et al., 2011). Models can also 

be classified into non-hybrid and hybrid methods. The non-hybrid approaches, such as Markov 

Chain (MC), Artificial Neural Network (ANN), Cellular Automata (CA), have been widely 

used to identify the transitions in LULC classes and have been accurate in predicting LULC 

changes (Silva et al., 2020; Singh et al., 2022). The Non-hybrid methods have limitations in 

predicting LULC changes, no single model takes all characteristics of LULC into consideration. 

(Noszczyk, 2019). 

To overcome the shortcomings of individual models, hybrid models have been introduced by 

combining several modelling approaches to address the complexity of real-world systems (Gaur 

et al., 2020). The hybrid models can capture LULC changes with greater accuracy (Gaur et al., 

2020; Sankarrao et al., 2021). In the hybrid models, transition potentials of each LULC class 

are identified using regression models, and spatial characteristics are captured with transition 

sets and neighborhood effects. Compared to the individual models (individual CA and MC), 

hybrid models could more accurately capture LULC change at the basin level (Mishra et al., 

2018). Clark Labs developed a LULC model based on GIS and remote sensing, known as the 

Land Change Modeller (LCM), to explore future changes in LULC using a Multilayer 

Perceptron neural network (MLP) and Markov chain (MC) ( MLP-MC) (Mishra et al., 2014).  

The MLP-MC model subsequently used a non-stationary relationship between selected 

explanatory variables and LULC maps to predict the future LULC. Mishra et al. (2018) 

endeavors to evaluate and compare three hybrid models: Stochastic Markov chain (ST-MC), 

cellular automata-Markov chain (CA-MC), and multi-layer perceptron-Markov chain (MLP-

MC) to predict future land use/land cover (LULC) scenario in Varanasi district. The findings 

of this study are that the MLP-MC model yielded reliable and best results. The results 

demonstrate the potentiality of MLP-MC hybrid model for better understanding of spatio-

temporal dynamics and predicting future landscape scenario in Varanasi district of Uttar 

Pradesh, India. Gaur et al. (2020) used hybrid and non-hybrid models to capture LULC 

scenarios for the Subarnarekha River and found that the MLP_MC model was the best-suited 

model. Therefore, the Multi-Layer Perceptron Markov Chain model (MLP-MC) embedded in 

LCM will be used in this study. The integration of MLP and MC takes advantage of both models 

(Leta et al., 2021; Sankarrao et al., 2021). While MLP is used to construct the transition 

potential maps (TPMs) for each transition, MC is used to perform time analysis.  MLP is 

composed of a neural network based on feed-forward algorithm with three layers: the input, 
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hidden and output layers (Mas and Flores, 2008).  One of the main advantages of MLP is its 

ability to model several or even all transitions at once. It adjust the weights of the input and 

output layers using the backpropagation process.  MLP-MC uses explanatory variables and 

land-use change as inputs  to forecast LULC changes (Sankarrao et al., 2021). Examples of 

applications can be found in (Fathizad et al., 2015; Mishra et al., 2018; Leta et al., 2021; 

Sankarrao et al., 2021).  

Predicting future LULC was done in five steps: change analysis, identification of explanatory 

variables, creation of transition potential maps, change prediction, and validation. LULC maps 

of the years 1986 and 2006 were employed to analyze the trend of change, to calculate transition 

potential maps and to predict the LULC map of 2020. For model validation, the LULC 

classified map for 2020 was compared with the predicted LULC map of 2020. After 

demonstrating our model's ability to predict the LULC map of 2020, the same simulation 

technique was used to predict the LULC maps of 2050 using the LULC maps of 1986 and 2020 

based on the business as usual (BAU) scenario (Mas et al., 2014). The BAU scenario is a 

scenario in which future LULC distributions follow the observed trends in the past and are 

formulated based on the transition probabilities and driving factors as predicted by the model. 

The assumption that the climate will not be disturbed by human activities has been adopted. 

The general scheme of the study is presented in Figure 18.  
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Figure 18:The procedures used to set up the Land change modeller and to simulate the future 

LULC map of 2050. 

3.3.3.2.1 Changes analysis 

The first step was the change analysis to define the transition classes. Changes are described as 

transitions from one class of LULC to another (Azari et al., 2022). The change analysis was 

performed by using the two earlier LULC maps with the module change analysis in LCM. The 

module change analysis estimates the gains and losses of each class between the two earlier 

LULC maps. Changes in terms of loss (Lij) and gain (Gij) are calculated using equations (40) 

and (41) (Thiam et al., 2021). 

Lij = (Pi−Pii) ( Pj∑j=1Pj),        where i≠j                                                                                     (40) 

Gij = (Pj−Pjj) ( Pi∑i=1Pi),   where i≠j                                                                                          (41) 
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where Lij is the proportion of loss from category i to j under random processes of loss, Pii is 

the proportion of category i that showed persistence between the two times, Gij is the proportion 

of gain from category i to j, Pj is the proportion of the landscape in category j at the end of time, 

Pjj is the observed persistent proportion of category j, and Pi is the entire area of category i at 

the starting point. 

3.3.3.2.2 Identification of the explanatory variables 

The second step was the identification of the explanatory variables that have driven past LULC 

changes. The simulation of LULC change depends on explanatory variables. Explanatory 

variables that have driven past LULC changes are influential in future changes and are selected 

based on available data and their explanatory capabilities (Murgante et al., 2014; Chinwendu, 

2019). Based on the literature, slope, elevation, distance to the river, distance to the settlement, 

and distance to the road were selected as the main variables influencing the change in LULC 

over time (Murgante et al., 2014; Chinwendu, 2019). Slope and distance to the river were 

selected to represent the accessibility of a neighborhood. Distance to road and distance to 

settlement were used to highlight the proximity of urbanization. 

3.3.3.2.3 Transition potential modelling 

 The third step was the determination of transition potential maps with the 

multilayer perceptron (MLP) model in LCM. MLP adjust the weights of the input and output 

layers using the backpropagation process. It only incorporates conductive factors with strong 

predictive capacity into the computation procedure, resulting in different transition potential 

maps for each sub-model. These maps show the ability to change from one LULC class to 

another (Mishra et al., 2014). The MLP model was established and tested using the explanatory 

variables and the change analysis obtained between the two earlier images as input. The MLP 

first created a random sample of cells that transitioned among LULC classes during the required 

time and started the automatic training process. The sample is divided into two equal parts, 50% 

of the sample for training and the remaining 50% for testing the performance. Transition 

potential maps were generated after the successful execution of MLP training for each class.  

 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/self-organizing-systems
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3.3.3.2.4 Change prediction 

The fourth step was using Markov Chain (MC) in LCM to predict the LULC map for a specified 

future date. The historical rate change determined during the change analysis phase and 

transition potential maps are used as input in the MC model to predict the future LULC. The 

MC model is a stochastic process that shows the probability that one state will change into 

another. The MC model uses this information as the basis to predict future changes. The MC 

model creates a transition probability matrix of changes by examining past changes (Mishra et 

al., 2018). Based on a projection of the transition potentials into the future, the technique 

estimates LULC expected to transition from the later date to the forecasted date and provides a 

transition probability file (Mishra et al., 2014). The following equation represents the Markov 

chain analysis:  S(t, t + 1)  = Pij ×  S(t)                                                                                                             (42) 

Where, 

 S(t) is the state of the system at time t,  

S(t+1) is the state of the system at time t+1 ; 

 Pij is the state transition probability matrix, which is calculated according to the following 

formula: 

 Pij = [P1,1 P1,2 P1, N… … …PN, 1 PN, 2 PN, N], (0 ≤ Pij ≤ 1)                                                                         (43) 

Where P is the transition probability; Pij represents the probability of changing from the current 

state i to another state j at the next time; PN is the probability of the state at any time. The high 

transition has possibilities close to (1), and the low change will have a probability close to (0) 

(Wang et al., 2021).  

3.3.3.2.5 Model validation  
Model validation is a crucial component of the modelling process. It aims to verify the accuracy 

rate of the simulated map compared to a reference map. Two approaches have been used for 

model validation. The first approach is to use the metric performance indicators between the 

classified map and the predicted 2020 map to assess the accuracy of the prediction (Pontius and 

Batchu, 2003). These are the relative operational characteristic (ROC/AUC) and the validation 
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statistics of various Kappa indices, namely Kappa for no information (Kno), Kappa for location 

(denoted Klocation), KIA for h Kstandard. The relative operational characteristics (ROC/AUC) 

quantify the certainty of predicting the location of the change (Pontius and Batchu, 2003). 

Kappa for no information (Kno) gives the overall success of the simulation (Pontius, 2000). 

Kappa for location (denoted as Klocation) shows the agreement on location (Nadoushan et al., 

2012). Kappa for agreement index (KIA) confounds disagreement on quantity with 

disagreement on location (Nadoushan et al., 2012). These Kappa indices reflect a perfect 

simulation when equal to 1, satisfactory when greater than 0.70, respectively, and excellent 

when greater than 0.8, respectively (Tiné et al., 2019). LULC model is valid if the Kstandard is 

greater than 70%, according to Zadbagher et al. (2018). The second approach is to compare the 

predicted and actual area of each LULC class.  
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3.3.4 Methodology for hydrological modelling of the Bafing watershed 

The steps involved data preparation, model simulation, sensitive analysis, calibration, 

validation, and performance evaluation. The general approach adopted for the hydrological 

modelling is presented in Figure 19. 

 

Figure 19: General Modelling approach adopted for this study. 

P= precipitation, T=temperature, SR=solar radiation, W=wind. 

3.3.4.1 Input data preparation 

The first step was the preparation of input data in GRASS GIS (Figure 20). First, The MERIT 

DEM was used to delineate the watershed and analyze drainage patterns. After, with the 

function m.Swim: subbasins in GRASS GIS, the watershed was separated into several sub-

basins. The function m.Swim: subbasins used the elevation from MERIT DEM and gauges 

station as input data. After the HRUs file was created using the GRASS GIS function m.Swim: 

hydrological response units. The function m.Swim: hydrological response units used the 
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subbasins file, soil map and LULC map as input data. LULC map was obtained with Landsat 

images and RF classification method. The HRUs have soil, slope, and land use characteristics 

that increase the accuracy of calculations. Then, the routing and file.cio was created by using 

the functions m.Swim:routing, m.Swim: substats with subbasins, accumulation and 

mainstreams files as input data. For the reservoirs, data such as the relationships between the 

dam surface area, water level, and water volume were computed for the two planned dams using 

the function r.lake in GRASS GIS at different inundation levels. The DEM and the location of 

the dams served as input data to the function r.lake in GRASS GIS. All these created files were 

used as input data to the SWIM model for the setup and simulation of the SWIM model. 

 

Figure 20: Approach adopted for input data preparation (Didovets, 2021) 

3.3.4.2 Sensitivity analysis, calibration, and validation 

For optimizing the model performance, sensitivity analysis, calibration and validation were 
performed.  

3.3.4.2.1 Sensitive analysis 

The sensitivity analysis was performed after the setup and simulation of the SWIM model. The 

sensitivity analysis aims to identify parameters and input variables that strongly or weakly 

influence the outputs of the model (Sane et al., 2020). Sensitivity analysis allows reducing the 

number of parameters to be use for the calibration (Sane et al., 2020). As part of this work, the 

sensitivity analysis was conducted manually. The procedure consists of changing only one 

parameter at a time on a predefined range of values while keeping the other constants and 

repeating the operation for the remaining parameters (Sane et al., 2020). However, it does not 
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quantify the interaction effects between parameters (Griensven, 2009). The 24 parameters to 

calibrate in the SWIM model are presented in the Table 14. 

Table 14: Description of parameters in SWIM 

Parameter Description   Range 

Evapotranspiration, routing, curve number, conductivity, precipitation 

ecal  Potential evapotranspiration  0.7 – 1.3 

thc  Potential evapotranspiration on sky emissivity 
 0 – 1 (0 = without sky 
emissivity) 

roc2 roc4  River routing coefficients for quick and slow components 
 1-50 (1 = quick routing; 
50 = slow routing 

cncor  Curve number  0.75 – 1.25 

sccor  Soil hydraulic conductivity 

 1 – 50 the higher the 
value the higher 
conductivity 

prcor  Precipitation  0.8 – 1.2 

Groundwater 
bff  Base flow factor used to calculate return flow travel time  0.1 – 3 

abf  Alpha factor for groundwater. This parameter characterizes the ground 
water recession 

 0.0005 – 0.95 

delay 

 Groundwater delay (days). The time it takes for water leaving the 
bottom of the root zone until it reaches the shallow aquifer where it can 
become groundwater flow 

 1 – 200? 

revapc 
 Fraction of recharge that “re-evaporates” directly from the shallow 
groundwater aquifer  0 – 0.3 

rchrgc 
 Deep aquifer percolation coefficient. The amount of water that is 
allowed to percolate from shallow into the deep aquifer  0 – 1 

revapmn 
 Revap storage (mm). Shallow aquifer storage must exceed 
REVAPMN before groundwater flow can begin 

 

Transmission losses 

tlrch  Transmission losses riverbed  0 – 3 (0 = no losses) 
evrch  Evaporation from river surface  0 – 3 (0 = no losses) 

tlgw  Destination of transmission losses 

 0 = to shallow gw; 1 = 
to deep gw; 2 = to both 
in equal terms 

Elevation-based precipitation & temperature correction 

xgrad1  Precipitation factor  (-)3 – (+)3 

tgrad1  Temperature factor  ? 

ulmax0  holding capacity  ? 

rnew  fresh snow density  

Snow 

tsnf  Snow fall temperature  (-)3 – (+)3 

tmelt  Snow melt temperature  (-)3 – (+)3 

smrte  Snow melt rate  ? 

gmrte  Glacier melt rate  ? 
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3.3.4.2.2 Calibration and validation of SWIM model 
After the sensitive analysis of the model, the calibration and validation of the model was 

realized based on the parameters obtained. Calibration is a phase that involves adjusting model 

parameters so that the simulated flows correspond to the observed flows (Sane et al., 2020). 

The objective is to determine the values of the parameters of the model that allow it to obtain 

the best performance of a given criterion. The calibration of the hydrological model is explained 

as follows: first, all parameters inherit a default value from the attributes or parameterization of 

the input data of the model (soil type, land cover, etc.). The SWIM model was calibrated and 

validated with the observed flow data on a daily time step at the Bafing Makana and Dakka 

Saidou gauges. Thus, the Nash-Sutcliffe efficiency (NSE), the Kling-Gupta efficiency (KGE), 

Percent Bias (Pbias) and the coefficient of determination R2 were used to evaluate the model 

performance.  

Firstly, the calibration was carried out without the integration of the reservoir module for the 

period from 1979 to 1986 at the gauge of Dakka Saidou and Bafing Makana. Calibration was 

performed manually with sensitive parameters obtained after sensitivity analysis.  

Secondly, the Manantali dam was included in the model through the reservoir module (Figure 

21). The values of parameters obtained during the first step of the calibration were used as a 

starting set to calibrate the daily inflow in the Manantali dam. The simulated inflow, outflow 

and water stored in the Manantali dam were compared with the observed inflow, outflow and 

water level during the period 2003 to 2009 based on pre-established management rules. The 

calibration was based on the allocation of the minimum target downstream flow (hydropower 

generation requirement) and the adjustment of the special annual cycle coefficient, which 

regulates the percentage of volume that can be discharged each month.  

Thirdly, the future Boureya and Koukoutamba dams were included in the model (Figure 21). 

To calibrate the inflow in koukoutamba and boureya dams, the set of parameters obtained 

during the second step of calibration was used as a starting set to calibrate the sub-basins 

upstream of the Bafing Makana and Dakka Saidou stations. The calibration was also based on 

the assignment of the minimum target downstream flow (hydropower generation requirement) 

and the adjustment of the special annual cycle coefficient, which regulates the percentage of 

the water volume that can be released in a given month.  
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During the fourth stage, the entire watershed (excluding the sub-basins of the upstream 

Koukoutamba and Boureya dams) was recalibrated manually, taking the flow of the Bafing 

Makana station and Dakka Saidou as objective functions. Once the model is calibrated, it must 

be passed to a validation step which consists in verifying by a comparison of the data simulated 

and observed through a quality criterion (Sane et al., 2020). Its principle is to test the model on 

a series of data other than the data used in the calibration phase. The model was validated during 

the period of 1987-1994 using the latest parameters obtained during the recalibration of the 

entire watershed. 

3.3.4.2.3 Performance evaluation of the model 
To determine how closely the model's simulated values matched the actual values, the model's 

performance was examined. Various objective functions are offered to evaluate the 

effectiveness of the model. Thus, the performance of the model was evaluated using the NSE, 

KGE, Pbias and R2. The NSE is the most used tool for evaluating the correctness of model 

simulation results. The R2  provides a measure of how well observed outcomes are replicated 

by the model. The Pbias is used for quantifying the volume errors. The ideal value for Pbias is 

zero and lower values indicates accurate model simulation while positive and negative values 

indicate model underestimation and overestimation biases respectively. The KGE 

simultaneously optimizes three aspects of the model's predictive capability: correlation, bias 

and variability (Pulighe et al., 2020). In addition, the value of KGE corresponds to the minimum 

of the values taken by its three components, making it an easy index to interpret. The 

dimensionless structure of these criteria allows the performance evaluation across several 

catchments, making them particularly helpful in model evaluation (Sane et al., 2020). 

According to  Moriasi et al. (2007) and Kling et al. (2012), a simulation model can be 

considered satisfactory based on the thresholds defined in Table 15.  
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Figure 21: Localization of the existing (Manantali) and future dams (Koukoutamba and 
Boureya) in the Bafing watershed. 
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Table 15: Interpretation for the performance evaluation on the SWIM model. 

Performance 

evaluation of the 
hydrological 
model 

Formula  Value range 

Classification des 

Performances 

 

NSE 1 − ∑(Qobs − Qsim)2∑(Qobs − Q̅obs)2 

 

0.75 < NSE ≤ 1.00 

0.65 < NSE ≤ 0.75 

0.50 < NSE ≤ 0.65 

0.4 < NSE ≤ 0.50 

NSE ≤ 0.4 

 

Very well 

Good 

Satisfactory 

Acceptable 

Not satisfactory 

 

 

 

(44) 

R2 
∑((Qobs − Q̅obs)(Qsim − Q̅sim))2∑(Qobs − Q̅obs)2 ∗ ∑(Qsim − Q̅sim)2R2>0.5 

R2 values >0.5 acceptable pour la 

simulation 

 

(45) 

Percentage bias 

(PBIAS) 
∑(Qobs − Qsim) ∗ 100∑(Qobs)  

PBIAS < ±10 ±10 ≤ PBIAS < ±25 ±10 ≤ PBIAS < ±25 ±25 ≤ PBIAS < ±40 PBIAS ≥ ±10 

 

Excellent 

Good 

Satisfactory 

Acceptable 

Not satisfactory 

 

 

 

(46) 

KGE 

KGE= 1− √(r − 1)2 + (β − 1)2 + (γ − 1)²

 KGE ≥0.90 0.90 ≥ KGE ≥ 0.75 

0.75≥ KGE ≥ 0.5 

0.5≥ KGE ≥ 0 

 

 

Excellent 

Good 

Satisfactory 

not satisfactory 

 

 

(47) 
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Where 𝑟 is the Pearson correlation coefficient,  β = μs μ0⁄    the ratio of simulated (𝜇𝑠) and 

observed (𝜇0) flow means and  γ = CVs/ CV0⁄  the ratio of simulated (𝐶𝑉𝑠) and observed flow 

(𝐶𝑉0) coefficients of variation (Roland, 2021); Q obs= observed flow, Q sim= simulated flow. 

3.3.4.3 Water management scenarios 

The development scenarios (DS) are designed so that future dams are considered in the 

simulation (Table 16). 

Table 16: Dam development scenarios  

Development scenario 1 (DS1) Manantali dam only 

Development scenario 2 (DS2) Manantali and Koukoutamba dams 

Development scenario 3 (DS3) Manantali, Koukoutamba and Boureya dams 

 

3.3.4.4 Simulation periods  

The reference period (P0) around the year 2000 represents the period 1984–2014. The near 

future around 2050 (P1) is the period 2035–2065, the far future around 2080 (P2) correspond 

to the period 2065–2095.  

3.3.4.5 Impact assessment  

In the context of this study, the main objective is to evaluate the impact of climate change and 

LULC change on hydrology and the hydropower potential (HPP) of the system by first 

considering the Manantali dam alone (DS1), then the Manantali dam, Koukoutamba  system 

(DS2) and Manantali dam, Koukoutamba  Boureya system (DS3). Climate change and LULC 

change are assumed to be independent in order to differentiate the respective contributions of 

these two factors. Their impacts are estimated by a separation method consisting of changing 

one factor at a time (either climate or LULC) by keeping the other constant (Mekonnen et al. 

2018) and combining the two factors (climate and LULC). A set of relevant performance 

indicators is used to compare future scenarios with the reference period. These indicators are 

spill, and probabilities of exceedance. In this case, the spill is considered as a failure associated 

with the maximum capacities, which could negatively affect the hydropower generation. For 

future dams, management objectives have not yet been established. Thus, the criterion 

reliability is applicable only to the Manantali dam. Table 17 provides a detailed explanation of 

each indicator used and the accompanying measurement technique. 
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Table 17: List of performance indicators names, definitions, and measurement methods 

Indicator name Definition Measurement method  

Production 

(GWh/y) 

Mean annual electricity 

production 

Mean of produced electricity during the simulated 

periods compared to the reference   

Spill (Mm3/a?) Spilled volume Sum of the volumes spilt during the simulated 

periods compared to the reference   

Probability of 

exceedance 

The exceedance 

probabilities correspond to 

the annual electricity 

production level that is 

reached with a defined 

probability.  

Probability of exceedance (EP99, EP90 and PP95) 

during the simulated periods compared to the 

reference   

 

3.4 Conclusion 

Observational data are insufficient for modelling purposes (1979-1986 and 2001-2003) in the 

Bafing watershed. Thus, in order to choose the best precipitation product, the precipitation 

products W-era5 (reanalysis data) and CHIRPS (satellite data) were compared to the observed 

precipitation for the Bafing Makana station.  The performance of these products in representing 

observed trends was analyzed based on statistical indicators, such as R2, RMSE, Pbias, NSE, 

the Taylor diagram at monthly and annual time steps and seasonal analysis. Next, the 

performance of 10 GCMs from ISIMIP 3b in reproducing the reference climate over the period 

1979-2014 was assessed based on statistical indicators (such as R2, RMSE, Pbias, NSE), the 

Taylor diagram, seasonal analysis and the analysis of historical trends with the Man Kendal 

test. Then, the analysis of future climate trends (precipitation, temperature) was carried out in 

the near future (P1: 2035-2065) and the far future (P2: 2065-2095) compared to the reference 

period (P0: 1984-2014) under ssp 126 and ssp 370.  

The land use and land cover mapping (1986, 2006 and 2020) was carried out using the Random 

Forest (RF) classification method in the Google Earth Engine (GEE) platform. Landsat imagery 

from 1986, 2006 and 2020 was used for the LULC mapping. The mapping was carried out in 
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three steps namely Landsat image preprocessing, supervised classification with the Random 

Forest classification method and evaluation of classification accuracy. Five classes of LULC 

namely settlement, water, vegetation, cultivated areas, and bareground were used in the 

classification. A confusion matrix was generated in GEE and the overall accuracy (O), user 

accuracy (U) and producer accuracy (P) and kappa index (K) were then used to assess the 

reliability of the classification.  

The prediction of LULC change for 2050 was performed using the Multilayer Perceptron neural 

network (MLP) and Markov chain (MLP_MC) model in Land change Modeller (LCM). The 

prediction of LULC map of 2050 was done in five steps: analysis of changes, identification of 

explanatory variables, creation of transition potential maps, prediction and validation of the 

model. The maps of LULC of the years 1986 and 2006 were used for the change analysis, the 

creation of transition potential maps and the prediction of LULC map of 2020. For model 

validation, performance indicators such as relative operational characteristic (ROC) and Kappa 

index validation statistics (Kno, Klocation, KIA) between the classified map and the predicted 

map of 2020 were used to assess the accuracy of the prediction.  After the validation of the 

model, the same simulation technique was used to predict the LULC map of 2050 using the 

LULC map of 1986 and 2020 based on the BAU scenario. 

The Soil and Water Integrated Model (SWIM) was chosen to simulate hydrological processes 

in the Bafing watershed considering the LULC change, climate change and the management of 

existing and future dams. The SWIM model was simulated with the outputs of the ten GCMs 

and the LULC maps of 1986, 2006 and 2020.  The calibration of the model was done during 

the period 1979-1986 and the validation over the period 1987-1993 with the integration of dams 

(Manantali, Koukoutamba and Boureya). Model performance was evaluated using NSE, KGE, 

Pbias, R2. Development scenarios (DS) were established so that future dams were considered 

in the simulation process. The hypothesis that climate change and LULC change are 

independent was done to separate the respective contributions of these two factors. Their effects 

were calculated using a separation method that involves changing one factor at a time (either 

climate or land cover while holding the other constant) and combining the two factors. A set of 

relevant performance indicators was used to compare future changes with the reference period. 

These indicators include volume spilled and probabilities of exceedance (P99, P90, P95).  
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Chapter 4: Global Climate Model performance and future trend analysis in the Bafing 
watershed 

This chapter provides results on the ability of two precipitation products (satellite-based data 

(CHIRPS) and reanalysis data (W-era5)) to reproduce the observed precipitation in the Bafing 

watershed (Bafing Makana rainfall station) during the period 1981-1986 and 2001-2003. After, 

the historical simulations of ten GCM data from ISIMIP 3b were compared with the reference 

data for the period 1979-2014 (of which both data are available). Further, the projection of 

temperature and precipitation were used to study the projected change in climate in the near 

future (P1:2035-2065) and the far future (P2: 2065-2095) compared to the reference period (P0: 

1984-2014) under the ssp 126 and the ssp 370. 

4.1 Assessment of the ability of two precipitation products (satellite-based data (CHIRPS) 
and reanalysis data (W-era5)) to reproduce the observed precipitations data 

➢ Statistical results (monthly and annual scale) 

On a monthly scale, the values of the correlation coefficients obtained are positive and comprise 

between 0.9 and 1, indicating a strong association between the observed data and the two 

precipitation products (CHIRPS, W-era5) (Table 18). However, the correlation is more 

assertive with the W-era5 data with a value of 0.94 (Table 18). Similarly, the Pbias values 

obtained are acceptable because they range between -20 to 20. The Pbias value obtained with 

W-era5 is close to 0, indicating that the W-era5 are almost identical to the observed data (Liu 

et al., 2019). Ideally, the RMSE value should be 0 (Ali and Abustan, 2014), but the values 

obtained with W-era5 are lower than that obtained with CHIRPS (Table 18).  The NSE values 

obtained are greater than 0.80 (CHIRPS) and 0.9 (W-era5), showing that the two products 

reproduce satisfactorily the observed precipitation. The results of the RMSE and correlation of 

the Taylor diagram (RMSE, correlation) coincide with the statistical results found (Figure 22).  

The results of the standard deviation of the Taylor diagram show that the difference between 

the observed and CHIRPS data is between 100 and 150, while between the observed and the 

W-era5 data is between 50 and 100. The results show that the W-era5 data better represents the 

observed data than the CHIRPS data on a monthly scale. 

On an annual scale, there is an acceptable degree of correlation (0.7) and a poor NSE (0.3) 

between CHIRPS and the observed data (Table 18). On the other hand, the correlation between 

W-era5 and the observed data is very high, with a value of 0.9 and an acceptable NSE (0.6). 
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The values obtained from RMSE are very high for both products (Table 16). However, the value 

obtained with W-era5 is lower (226%) than that obtained with CHIRPS.  

In summary, these results highlight that the W-era5 data represents better the observed data 

than the CHIRPS data on a monthly and annual scale based on the statistical results. 

 

Table 18: Pearson correlation, Pbias, RMSE and NSE calculated between observed and 

estimated rainfall products (W-era5, CHIRPS) at monthly and annual scales. 

Station Period RMSE Pbias (%) NSE Pearson Cor 

Monthly scale 

Bafing W-era5 35 1.5 0.91 0.94 

CHIRPS 45.1 11.9 0.82 0.91 

Annual scale 

Bafing W-era5 168 1.5 0.641 0.904 

CHIRPS 228 11.9 0.337 0.741 

 

 

Figure 22: Spatial representation by Taylor diagram (Pbias, RMSE and standard deviation) 

between observed and estimated rainfall products at monthly scale 
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➢ Seasonal analysis 

At the seasonal scale, the unimodal profile of observed precipitation was reproduced by both 

products (W-era5 and CHIRPS) (Figure 23). The beginning (April), the end (November) and 

the rainiest month (August) of the rainy season for both products are also consistent with the 

observed data (Figure 23).  However, there is an overestimation of 15% of precipitation by 

CHIRPS and 4% by W-era5 for the rainy season (especially in August). In conclusion, the 

observed seasonality is better represented by W-era5 than CHIRPS. 

 

Figure 23: Comparison of monthly reanalysis (W-era5) and satellite precipitation (CHIRPS) 

with observed precipitation during the period 1981-1986 and 2001-2003.  

➢ Interannual variability 

The analysis of interannual variability shows substantial year-to-year variations, although the 

intervals are too short to accurately describe interannual rainfall variability in the Bafing 

watershed. Figure 24 shows that, although both products overestimate annual precipitation, the 

overestimation obtained by CHIRPS is higher than those of W-era5, except in 2003.  
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Figure 24: Analysis of interannual variability between W-era, CHIRPS and observed 

precipitation during the period 1981-1986 and 2001-2003 

In this section, two precipitation products: reanalysis data (W-era5) and satellite data 

(CHIRPS), were compared with observed precipitation of the Bafing Makana station on an 

annual, monthly and seasonal basis. Different characteristics were observed between the 

reanalysis data and the satellite data. Both products tend to overestimate observed precipitation, 

but it is more pronounced with CHIRPS than W-era5. In addition, W-era5 showed the highest 

accuracy with a good monthly and annual correlation and low bias values based on statistical 

measures. Thus, the reanalysis data (W-era5) will be used to evaluate the performance of 

climate model data to reproduce the observed climate. 

4.2 Evaluation of the performance of GCM from ISIMIP 3b to reproduce temperature 
and precipitation of the reference climate data (W-era5) 

This performance assessment was based on the comparison of W-era5 and 10 GCMs from 

ISIMIP 3b data over the period 1979-2014.  
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4.2.1 Statistical Analysis (monthly scale) 

The statistical analysis (R2, RMSE, Pbias, NSE) results performed on a monthly scale to 

evaluate the ability of 10 GCMs from ISIMIP 3b models to reproduce the W-era5 reference 

data are presented in Table 17 and Figure 21. 

• Precipitation 

The values of the correlation coefficients obtained are positive and greater than 0.8 on the 

monthly scale, demonstrating a significant correlation between the reference (W-era) and the 

ten GCMs (Table 19). The bias values obtained are acceptable because they are close to 0 or 

equal to 0  (Liu et al., 2019). The RMSE values are between 49.8 and 68. Ideally, the RMSE 

value should be 0, but the values obtained are still acceptable (Ali and Abustan, 2014). The 

NSE values obtained are between 0.6 and 0.8, indicating that the ten models satisfactorily 

reproduce the reference data (W-era5). Considering the median and mean of the 10 GCMs from 

ISIMIP3b (stand for the multi model ensemble of the 10 GCMs from ISIMIP (MME)), they 

have both a positive correlation and an acceptable NSE higher than those obtained with the 

individual models. The RMSE values are lower than those obtained with the individual models.  

It is also noted that the median of MME is 6% lower than the mean (MME).  The values of the 

Pbias for both (median and mean of MME) are high exceeding the range of -20 and 20. They 

are also superior to those obtained with individual models. Another aspect to highlight is that 

the median of MME is 26% lower than the mean (MME). The results of the RMSE and 

correlation of the Taylor diagram (RMSE, correlation) are consistent with the statistical results 

found (Table 19, Figure 25).   
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Table 19: Statistical analysis (Pearson correlation, Pbias, RMSE and NSE) between reference 

data (W-era5) and GCM of ISIMIP 3b precipitation at monthly scale. 

Climate models Year Rmse Pbias NSE R2 

CanESM5 1979-2014 60.2 -0.8 0.69 0.85 

CNRM-CM6-1 1979-2014 59.4 -1.1 0.69 0.85 

CNRM-ESM2-1 1979-2014 68 -2.8 0.60 0.82 

EC-Earth3 1979-2014 62.3 -1.4 0.66 0.85 

GFDL-ESM4 1979-2014 59.5 -4.8 0.69 0.85 

IPSL-CM6A-LR 1979-2014 52.8 -0.3 0.76 0.88 

MIROC6 1979-2014 59.2 -0.9 0.70 0.85 

MPI-ESM1-2-HR 1979-2014 61 -1.4 0.68 0.85 

MRI-ESM2-0 1979-2014 59.4 1.7 0.69 0.86 

UKESM1-0-LL 1979-2014 49.8 0.0 0.79 0.89 

Mean 1979-2014 41.2 26.1 0.80 0.93 

Median 1979-2014 38.6 19.1 0.82 0.93 

 

 

Figure 25: Spatial representation by Taylor diagram (Pbias, RMSE and standard deviation) 

between W-era5 and 10 GCMs of ISIMIP 3b precipitation at monthly scale 
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• Temperature 

On a monthly scale, the temperature simulated by the ten GCMs from ISIMIP 3b satisfactorily 

reproduces the reference data (W-era5) with correlations greater than 0.9, NSE greater than 0.8 

and RMSE values and bias close to 0 (Table 20). The median and mean of MME have a better 

performance than the individual models. The results obtained with the Taylor diagram (RMSE, 

correlation) agree with the statistical results found (Figure 26, Table 20).  In addition, according 

to the Taylor diagram, the gap between the reference data (w-era5) and the data from the ten 

single GCM is more significant than the mean/median (MME).  

Table 20: Statistical analysis (R2, Pbias, RMSE and NSE) between reference data (W-era5) and 

GCM of ISIMIP 3b temperature at monthly scale. 

Temperature 

Climate models Year  Rmse Pbias NSE Pearson Cor 

CanESM5 1979-2014 1.06 0.20 0.83 0.92 

CNRM-CM6-1 1979-2014 1.01 0.10 0.85 0.93 

CNRM-ESM2-1 1979-2014 0.96 0.10 0.86 0.93 

EC-Earth3 1979-2014 1.05 -0.10 0.84 0.92 

GFDL-ESM4 1979-2014 0.96 0.00 0.86 0.93 

IPSL-CM6A-LR 1979-2014 0.98 0.10 0.86 0.93 

MIROC6 1979-2014 1.11 -0.50 0.82 0.91 

MPI-ESM1-2-HR 1979-2014 1.00 -0.20 0.85 0.93 

MRI-ESM2-0 1979-2014 1.07 0.00 0.83 0.92 

UKESM1-0-LL 1979-2014 0.90 0.10 0.88 0.94 

Mean 1979-2014 0.69 -0.10 0.93 0.96 

Median 1979-2014 0.70 -0.10 0.93 0.96 

 

 

 



94 

 

 

Figure 26: Spatial representation by Taylor diagram (Pbias, RMSE and standard deviation) 

between W-era5 and the ten singles GCM, the mean of MME and the median of MME of 

temperature at monthly scale 

4.2.2 Seasonal analysis 

➢ For precipitation 

All climate models capture the unimodal profile and the peaks of August. However, some 

models such as CNRM-CM6-1, GFDL-ESM4, MIROC6, MRI-ESM2-0, CNRM-ESM2-1 

overestimate the peak of August, while other models such as CanESM5, EC-Earth3, MPI-

ESM1-2, UKESM1-0-LL underestimate it (Figure 27). Considering the MME, the Median and 

Mean are both in agreement with the W-era5 precipitation (Figure 27). 
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Figure 27: Comparison of the W-era5 and the 10 GCM from ISIMIP 3b models, the mean and the median 

(MME) of precipitation (mm) over the period 1979-2014 
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➢ For temperature 

All climate models have captured the bimodal temperature profile provided by W-era5, with a 

first peak in March (around 30 °C) and the second peak in October (around 27 °C). The result 

implies that the models were able to reproduce the warmest and coldest months in the study 

area. The median and mean are in perfect agreement with the W-era5 data (Figure 28). 

 

 

 
 

 

Figure 28:Comparison of the W-era5 and the 10 single GCM, the mean and the median of MME of temperature over 

the period 1979-2014 

4.2.3 Past trend analysis (annual scale) 
The results of the Mann-Kendall trend tests and the Sen-slope are presented in Table 21. In 

these tests, the null hypothesis (H0) indicates no trend in the series, while the alternative 

hypothesis (H1) indicates that there are downward or upward trends. The level of statistical 

significance of trends for the p-value is 0.05.  The trend is non-significant (N.S.) for p-values ≥ 

α=5%. It is up for a n positive Sen slope and a p-value < α.   For precipitation, the W-era5 

reference data does not show a significant trend. All models show no significant trend as W-

era5 trend except CNRM-CM6-1 and MRI-ESM2-0.  For temperature, the results show that 

there is a significant upward trend of W-era5. The results also indicate that all models could 

reproduce this upward temperature trend over the Bafing watershed.  
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Table 21: Mann-Kendall and Sen test for precipitation and temperature by W-era5, GCMs, 

median and mean of MME during 1979-2014 

Models 

Annual precipitation (1979-2014) Annual temperature (1979-2014) 

Z p-value 
Sen's 

slope 
Z P-value 

Sen's 

slope 

W-era5 1.21 0.23 0.1379 3.72 0.00019000000 0.42 

CanESM5 1.96 0.05 0.22 5.17 0.00000022300 0.59 

CNRM-CM6-1 -0.477 0.6328 -0.06 4.023 0.00005746000 0.46 

EC-Earth3 2.6 0.0089 0.30 3.72 0.00019820000 0.42 

GFDL-ESM4 1.2572 0.2087 0.14 4.2744 0.00001910000 0.49 

IPSL-CM6A-LR 0.125 0.9 1.56 4.4 0.00001080000 0.50 

MPI-ESM1-2-
HR 

0.35 0.724 0.04 2.489 0.01200000000 0.28 

MRI-ESM2-0 -0.35 0.724 -0.04 3.847 0.00011960000 0.44 

UKESM1-0-LL 1.15 0.24 0.13 4.75 0.00000201000 0.54 

CNRM-ESM2-1 0.804 0.421 0.09 4.3 0.00001700000 0.49 

MIROC6 2.5898 0.0096 0.29 0.35 0.72430000000 0.04 

Mean 3.5201 0.00043 0.40 6.38 0.00000000017 0.72 

Median 3.23 0.001233 0.37 6.48 0.00000000009 0.74 

 

These results showed that GCM from ISIMIP 3b can reproduce the precipitation and 

temperature of W-era5 and provide reliable projections. For the multi-model ensemble of the 

10 GCMs from ISIMIP 3b (MME), the median of MME can be considered more representative 

of W-era5 compared to the mean of MME. The results of statistical measurements show that 

the median of MME is more efficient than mean of MME to reproduce the reference data (W-

era5). In addition, the median of MME can handle outliers that would carry too much weight if 

the mean were used. Thus, it will be used for the analysis of future trends for the near future 

(P1: 2035-2065) and the far future (P2: 2065-2095) compared to the reference period (P0: 1984-

2014).  
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4.3 ISIMIP3b climate projections over the Bafing watershed 

Precipitation and temperature trends were analyzed by comparing the near future (P1: 2035-

2065) and the far future 2080 (P2: 2065-2095) with the reference period (P0: 1984-2014). 

➢ Precipitation 

On an annual scale, according to the median of MME and compared to the reference period, 

precipitation is not projected to change substantially in the near future (P1). The median of 

MME ranges between an increase of average annual precipitation of 1% in ssp126 and a 

decrease of 1% in ssp370 (Figure 29). In the far future (P2), the climate scenario plays a larger 

role in precipitation projections. In both scenarios, a decrease in average annual precipitation 

by - 4% and - 8% in ssp126 and ssp370, respectively, is projected. A significant difference 

between the scenarios is that under ssp126, the median of MME is within the range of P0 but 

drops under the range in ssp370 (Figures 29 and 30). Figure 30 also shows that the two models 

CanESM5 and EC-Earth3 project much higher values than the other eight models of the 

ensemble. 

 

a) ssp 126 

 

 

b) ssp 370 

 

 Figure 29: Annual precipitation (mm) projection under a) ssp 126 and b) ssp 370 for future (2016-2100) compared to 

the reference period (1984-2014) 
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a) P1 

 

b) P2 

 

Figure 30: Precipitation and temperature projections from 10 single GCM and the median of MME from ISIMIP 3b 

for a) the near future and b) the far future compared to the reference period under ssp 126 and ssp 370 

At the seasonal scale, in the near future, the median of MME projects an increase in 

precipitation during the rainy season except in June under ssp 126 and a decrease in 

precipitation during the rainy season except May, June and July under ssp 370 (Figure 31). In 

the far future, the median MME projects a reduction in the mean monthly precipitation during 

the rainy season except September under both scenarios. 
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Figure 31:   Relative changes (%) in mean monthly precipitation of the median of MME of ISIMIP 3b for the near 

future (P1:2035-2065) and the far future (P2: 2065-2095) compared to the reference period (P0: 1984-2014) under ssp 

126 and ssp 370. 
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➢ Temperature 

On an annual scale, according to the median of MME, mean air temperature is projected to 

increase between 1.4°C and 2.0°C in the near future under ssp126 and ssp370, respectively. In 

the far future, the difference between both climate scenarios is more significant and ranges from 

1.6°C to 3.7°C (Figure 32). 

 

 

a) ssp 126 

 

b) ssp 370 

 

Figure 32:  Annual temperature projection based on the ISIMIP 3b models for future (2015-2100) relative to the 

reference period P0 (1984-2014) under a) ssp 126 and b) ssp 370    

 

At the seasonal scale, every month shows an increase in temperature according to the median 

(MME) in the future for both scenarios. April, May, and June will be among the warmest for 

both scenarios in the near and the far future (Figure 33).  However, a higher increase in 

temperature is predicted under ssp 370 than under ssp 126.  
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Figure 33:Monthly mean temperature changes based on the median of MME of the ISIMIP 3b for near future 

(P1:2035-2065) and far future (P2:2065-2095) compared to the reference period P0 (1984-2014) under a) ssp 

126 and b) ssp 370 
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4.4 Conclusion 

In this chapter, the ability of two precipitation products (the satellite product (CHIRPS) and the 

reanalysis (W-era5)) to reproduce the observed precipitation was compared and evaluated 

during the periods 1979 to 1986 and 2001 to 2003. The comparison shows that W-era5 

reproduces observed precipitation better than CHIRPS. All statistics measures show the 

observed and the W-era5 data are almost equivalent in terms of Pbias, R2, NSE and RMSE on 

an annual and monthly scale. In addition, seasonal and interannual analysis indicates that W-

era5 better represents observed precipitation than CHIRPS. These results are coherent with 

those of  Ougahi and Mahmood (2022), who evaluate the suitability of five precipitation 

products (ERA5, CFSR, MERRA2, PERSIANN-CDR And CHIRPS) to serve as a reference 

for the selection of precipitation data as input, to the SWAT model. According to their findings, 

reanalysis data outperforms satellite data, and ERA5 data outperforms CHIRPS data. Thus, W-

era5 dataset were used as reference data to evaluate the performance of ten GCMs from ISIMIP 

3b and for the calibration and validation of the hydrological model.  

The ten models from ISIMIP 3b were downscaled and bias adjusted using the W-era5 dataset 

(Lange, 2019). The evaluation was carried out using statistical measures (R2, RMSE, NSE, 

Pbias), the Taylor diagram, and the Mann Kendall test. The assessment was performed at 

monthly timescales. The statistical results showed that the models can reproduce the 

precipitation and temperature of W-era5. The results obtained with the Taylor diagram (RMSE, 

correlation) agree with the statistical results found. The result indicated also that the models can 

fairly reproduce the unimodal structure (rather simulated bimodal) of the W-era precipitation 

(temperature). Furthermore, the median of MME outperformed the mean of MME because the 

results of statistical measurements show that median of MME is more efficient than mean of 

MME to reproduce the reference data (W-era5). The median of MME can provide reliable 

projections at the monthly scale. Therefore, the median of MME was used to analyze the future 

trend of the near future (P1:2035-2065) and the far future (P2:2065-205) compared to the 

reference period (P0:1984-2014). 

According to the median (MME), the average temperature is expected to increase in the near 

and the far future under ssp 126 and ssp 370 compared to the reference period. On the other 

hand, uncertainties about the precipitation projection are high. Indeed, precipitation is likely to 

increase under ssp 126 or decrease under ssp 370 in near future (P1). In the far future (P2), both 

scenarios agree on a decrease in precipitation. These results are consistent with Diakhaté et al. 
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(2022) who analysis the Projected Changes in the Rainfall Annual Cycle over the Senegal River 

Basin Using CMIP5 bias-Corrected Simulations. These uncertainties in the projections of 

precipitation by Climate Models have been reported by Rowell et al. (2016) Diedhiou et al. 

(2018), (Nikulin et al., 2018), Almazroui et al. (2020) and Dosio et al. (2020, 2019) when 

investigating future climate changes over West Africa. Their results showed that West Africa 

is one of the regions where the majority of models project a significant change in mean 

precipitation, but they do not agree on its sign.  

According to previous studies (e.g. Nikulin et al., 2012; Akinsanola and Ogunjobi, 2017; 

Akinsanola and Zhou, 2019) the large uncertainties associated with climate projections of 

precipitation over Africa are partly due the fact that climate models show significant limitations 

in simulating complex systems like the West African Mousson. Indeed, the annual cycle of 

precipitation over the region is linked to the passage of the West African Monsoon (WAM), 

which is driven by the interaction of atmosphere, ocean, and land-surface, and strongly related 

to mid-tropospheric circulation (Dosio et al., 2020). The large uncertainties associated with 

global climate projections of precipitation over Africa can also be partially attributed due to the 

strong interannual variability of precipitation and to strong disagreements across GCMs (Bichet 

et al., 2020). This has important implications for decision makers formulating long terms 

strategies development plans. 
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Chapter 5: Analysis of land use and land cover changes  

This chapter examines the LULC changes between 1986 and 2020. It predicts LULC change of 

2050 utilizing LULC's past trend and land change modeller (LCM) to contribute to the 

establishment of appropriate development policies and land management strategies. 

5.1 Land use/land cover maps accuracy  

This section presents the results of LULC classification (Table 22). The overall accuracy O 

(28), user’s accuracy 𝑈 (29), producer’s accuracy P (30) were used to assess the reliability of 

the classification (Foody Giles M, 2022; Szantoi et al., 2021). The overall accuracy is the sum 

of perfectly classified pixels divided by the total sample size of pixels. The producer’s accuracy 

informs the analyst (producer) of the percentage of correctly classified LULC compared to the 

real world. The user’s accuracy measures errors of commission, which shows the probability 

of a classified pixel matching LULC type’s user of its corresponding real-world location. The 

overall accuracy obtained is equal to 96%, 95% and 95% for 1986, 2006 and 2020, respectively. 

The values of overall accuracy O (28), user’s accuracy 𝑈 (29), producer’s accuracy P are 

comprised between 0.75 and 0.98 (indicating perfect agreement). The Kappa coefficient (K) 

obtained for both maps is above the threshold of 0.8, which is considered satisfactory 

(Congalton, 1991; Olofsson et al., 2014; Szantoi et al., 2021). Therefore, the classification could 

be identified as accurate.  

Table 22: Classification accuracies: user's accuracy (U), producer's accuracy (P), overall 

accuracy (O) and the Kappa coefficient (K)  
Land cover/land use 

classes 

1986 2006 2020 

P U P U P U 

Settlement 0.84 0.96 0.94 0.93 0.97 0.95 

Water 0.99 0.99 0.98 0.99 0.93 0.96 

Vegetation 0.99 0.99 0.98 0.96 0.96 0.95 

Cultivated area 0.75 0.87 0.90 0.97 0.85 0.93 

Bareground  0.98 0.95 0.97 0.94 0.96 0.95 

Overall accuracy (O) 0.96 0.95 0.95 

Kappa index (K) 0.95 0.94 0.94 
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5.2 Land use land cove change detection 

Figures 34 and 35 show the results of the independently classified map for 1986, 2006 and 

2020. In 1986, the area covered by bareground was the most dominant LULC class, covering 

60% of the watershed. Over the 34 years, this area has gradually decreased to almost half, from 

60% to 30%. The vegetation area represents the second most dominant LULC class, covering 

36% of the watershed. This class has continuously increased from 36% in 1986 to 44% in 2020. 

Settlement was the third most dominant LULC class and covered 2.8% in 1986. However, 

settlement significantly increased to 16% in 2006 and 18% in 2020. The cultivated area was the 

fourth LULC class, covering 0.8% of 1986 in the watershed. The extent of cultivated area 

increased from 0.8% in 1986 to 4% in 2020. The area covered by water was the lowest but 

increased continuously over the study period from 0.6% to 3.3%. 
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Figure 34: LULC maps of the Bafing watershed for a) 1986, b) 2006, and c) 2020 
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Figure 35: Percentage of area per LULC category for 1986, 2006, and 2020 

  5.3 Land use/land cover change prediction  

5.3.1 Transition potential 
The result of transition potential (Figure 36) shows that, for example, the contribution to net 

change of the settlement class is the bareground and vegetation. This reflects that bareground 

and vegetation classes have been converted into the settlement class. From 1986 to 2006 and 

from 2006 to 2020, conversions from bareground to vegetation, settlement, cultivated area, and 

water were the most significant for Bafing (Figure 36). The most significant conversion was 

analyzed between 1986, 2006 and 2020 to select the main conversion in the modelling 

procedure. 
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Figure 36: Contribution to net change in each LULC type 

5.3.2 Model validation 

LULC changes prediction involves two different aspects. The first is the amount of change, and 

the second is the spatial distribution of change. The Multilayer Perceptron neural network and 

Markov chain (MLP-MC) model embedded in LCM reproduce very satisfactorily the amount 

of change (Figure 37). Indeed, on the simulated LULC map of 2020, the areas occupied by 

settlement, vegetation, bareground, water and cultivated area are 18.75%, 44.76%, 28.50%, 

3.91%, and 4.08%, respectively, against 17.93%, 43.85%, 30.87%, 3.30%, and 4.04%, 

respectively, on the reference map of 2020. Regarding the spatial distribution of change (Figure 

38), the visual comparison of the simulated 2020 map with the reference map reveals some 

differences.  

Indeed, the model predicts an increase in settlement mainly in Guinea, whereas in reality, the 

most significant increase in settlement has been observed in the northern part of Mali. These 

results can be explained by the limitation of the model to represent spatial distribution or the 

choice of explanatory variables. Nevertheless, the validation indicators provide values of ROC= 

81.6%, κia (kstandard) = 78.34%, Klo = 79.86% and kno= 86.83% (reflecting the overall 

accuracy of the simulated map), which are considered satisfactory (Okafor et al., 2019; Roland, 

2021; Tiné et al., 2019). Based on all these results, the MLP-MC model reasonably simulate 

the LULC map of 2020 and can be used to project future LULC change in the Bafing watershed. 
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Figure 37: Relative change (%)  between the classified and the predicted LULC map of 2020 

 

Figure 38: Comparison of a) reference LULC maps and b) simulated LULC maps of 2020 in 
the Bafing watershed. 

5.3.3 Projected LULC maps  
Changes in LULC between 1986 and 2020 were first analyzed, leading to transition potential 

maps and a probability matrix illustrating the significant LULC change. The transition 
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probability matrix for the classified maps between 1986 and 2020 is presented in Table 23. The 

results show that between 1986 and 2020, the settlement, cultivated area, and bareground 

classes were the most dynamic. Indeed, the settlement and cultivated area classes indicate a 

45% and 18% probability of not changing to another LULC class, respectively. At the same 

time, the area of cultivated area and bareground has a probability of 24% and 21% converting 

into settlement. Similarly, the vegetation class also shows stability with a chance of 80.7%. 

Bareground have a high possibility of converting into vegetation (22%). 

 

Table 23: Transition probability matrix (%) of the LULC map for the period from 1986 to 2006 

of the Bafing watershed. 

LULC classes Settlement Water Vegetation Cultivated area Bareground 

Settlement 0.4515 0.0158 0.2527 0.1149 0.165 

Water 0.0491 0.06236 0.2236 0.0014 0.1024 

Vegetation 0.0796 0.0358 0.8065 0.0139 0.13 

Cultivated area 0.2364 0.0544 0.4893 0.1813 0.3122 

Bareground 0.2089 0.0216 0.2157 0.0471 0.6836 

 

Finally, the LULC projection scenarios in 2050 were simulated based on the probability matrix 

obtained using the 1986 and 2020 maps. Figure 39 shows the predicted LULC maps for 2050. 

The results of this simulation indicate that vegetation will cover the largest area with 49% in 

2050, followed by settlement with an area of 19.4%. Bareground will be the third most 

dominant LULC class and will cover 22% in 2050. Water and cultivated area will each cover 

4.8%. 
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Figure 39:Predicted LULC map of 2050 

 

 5.4 Conclusion 

In this chapter, LULC changes over 34 years in the Bafing watershed were analyzed, and the 

predicted LULC changes in 2050 were simulated with the status quo (BAU) assumption. This 

study used Landsat images from 1986, 2006 and 2020 and the RF classification algorithm. RF 

classification results are very satisfactory with good accuracy. This confirms the findings 

obtained by Zurqani et al. (2018), who suggest that the RF algorithm performs better in regions 

where LULC  types are dominated by vegetation. The analysis of the post-classification change 

detection has reported significant changes in LULC during the study period. The analysis and 

detection of post classification change revealed the expansion of settlement and cultivated area 

during the study period. From 1986 to 2020, settlement and cultivated area increased steadily 

from 2.8% to 18% and 0.8% to 4%, respectively. This expansion can be attributed to the 

acceleration of population growth. The average growth rates are 2.5% and 2.7%, respectively, 
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for the countries covering the study areas, namely, Guinea, Mali and Senegal. Tabutin and 

Schoumaker (2020) observed a high population rate and the resulting socioeconomic impacts 

(increase in cultivated area). The study by Lambin et al. (2003) indicates that the cultivated area 

in WA increased due to population growth. This is confirmed by Herrmann et al. (2020), whose 

results prove that the intensity of LULC change within a 10 km radius of new settlement sites 

was up to three times higher than the regional average, confirming the crucial role of population 

pressure as a driver of change in WA. These results also mirror those of Berihun et al. (2019), 

who also found that population increase was consistent and positively correlated with the 

expansion of cultivated area between 1982 and 2006 in Ethiopia. An interesting result is the 

vegetation growth between 1986 and 2020. The area occupied by vegetation increased from 

36% to 44%, becoming the most dominant LULC class in 2020. This result is consistent with 

the results of UCAD (2019) and  Descroix et al. (2020), who found a regreening in the Fouta 

Djallon Plateau of the Bafing watershed in Guinea. The increase in vegetation that coincides 

with population growth suggests that population growth does not always lead to deforestation. 

Indeed, Descroix et al. (2020) pointed out that the densely populated areas of the Fouta Djallon 

Plateau of the Bafing watershed in Guinea are those where the vegetation cover is not threatened 

and where the ecological intensification of rural activities has long been established. Therefore, 

the claim "more people, more trees" proposed in Tanzania by Kabanza et al. (2013) seems valid 

in the Fouta Djallon Plateau of the Bafing watershed in Guinea. In addition, several projects 

have been adopted in the Bafing watershed in Mali to fight biodiversity losses after the 

construction of the Manantali Dam. These projects include the Bafing Faunal Reserve (Mali), 

the status of biosphere reserve (Mali), the Natural Resources Management Project 

(PGRN/World Bank) in the 1990s and 2000s, the Project for the Extension and Strengthening 

of Protected Area Systems, the Bafing transboundary area protected area project during the 

period 2010-2015 (Faty, 2017). Another significant result obtained is the increase in water from 

0.6% to 3.3% between 1986 and 2020. The observed increase in water can be explained by the 

recovery of rainfall in this region in the 1990s, after the drought period of 1960-1970. Many 

authors (Diop et al., 2016; Bodian et al., 2020; Nouaceur and Murarescu, 2020) noted a recovery 

in rainfall in WA. Bodian et al. (2020) studied the recent evolution of hydroclimatic variables 

in the SRB from 1940 to 2013. These results show a recovery in the SRB's annual rainfall, 

improving surface water availability. Recovery of annual flow was reported after the 1990s in 

the Bafing watershed (at Bafing Makana station) (Sane et al., 2017). The observed increase in 

water can also be attributed to the construction of the Manantali dam in the Bafing watershed. 
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The Manantali Dam, built in 1988, has an area of approximately 477 km2 and a capacity of 

11791.8 million m3 (Bader, 2001). It aims to make surface water available and sustainable 

throughout the year and to satisfy energy production and flow regulation, especially in the 

context of climate change and variability (Bader et Rolland, 2005). The predicted LULC map 

of 2050 was realized using the MLP-MC model embedded in LCM with the BAU scenario. 

LULC change prediction is based on the amount of change and the spatial distribution of 

change. LCM provides the amount of change and the spatial distribution of change by 

comparing initial (1986) and second (2006) LULC maps and then predicting future land cover 

(2020) using the MC transition probability matrix for the future. Model validation is performed 

by comparing the simulated LULC map (2020) with the classifier LULC map (2020)'. The 

results revealed that while the percentages of LULC between the reference map (2020) and the 

simulated map (2020)’ have a very high degree of concordance; the spatial distribution appears 

to be quite different. These results can be explained by the fact that Markov chain (MC) model 

ignores the spatial distribution of changes. Indeed, according to Mishra et al. (2018), the main 

limitation of the MC model is that it just considers the temporal trends without considering 

spatial aspects. However, the validation indicators (ROC, kia, Klo and kno) and the good 

agreement in the amount of change indicate that the Multilayer Perceptron neural network and 

Markov chain (MLP-MC) model reasonably reproduce the LULC map of 2020 and can be used 

to project future LULC change in the Bafing watershed. During the period 2020-2050, the 

prediction results (based on the past trend (1986-2020) revealed that vegetation would be the 

dominant LULC, but an increase in cultivated area, water, and settlement will also be observed 

in 2050. A trend toward “more people more tree” is seen in the Bafing watershed. This 

combination of results suggests that population increase, and anthropogenic activities are the 

primary drivers of LULC changes. The results showed that when population growth is 

accompanied by adopting sustainable land management practices (appropriate policies and 

regulations), it can lead to better land and water conservation. The presence of a large dam in 

the Bafing watershed has led to the implementation of virtuous policies favourable to the 

environment.  
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Chapter 6: Assessment of the potential impacts on the hydrology in the Bafing watershed  

This chapter presents the results of hydrological modelling and the dam module of the SWIM 

model in the Bafing watershed. After the setup and the simulation of SWIM model, the impacts 

of climate change, land use/land cover change (LULC change), and the exploitation of future 

dams (koukoutamba and boureya) on the hydrology of the Manantali dam were estimated for 

the near future (P1:2035-2065) and far future (P2:2065-2095) under a) ssp 126 and b) ssp 370 

compared to the reference period (P0: 1984-2014) and the LULC change from 1986 to 2050. 

Ten GCMs of ISIMIP 3b data under a) ssp 126 and b) ssp 370 and the LULC maps of 1986, 

2020, and 2050 were used as input data in the SWIM model to simulate the hydrological 

processes. 

6.1 Sensitivity analysis, calibration and validation of the SWIM model 

6.1.1 Sensitive analysis 

Sensitivity analysis allowed to reduce the number of parameters used to calibrate the model. 

Sensitivity analysis for the Bafing watershed carried out over the calibration period (1979-1986) 

showed that 11 of the 24 parameters were sensitive. The parameters are presented in decreasing 

order from the most sensitive to the least sensitive in Table 24. According to the Table 24, the 

most sensitive parameters are related to runoff (scoor, roc2, roc4, bff, cncor,prcor), groundwater 

flow (abf, revapc, rchrgc, delay, revapmn) and transmission losses (tlrch). The interaction 

between groundwater and surface runoff can explain these findings. 
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Table 24: Parameter classified in decreasing order after sensitivity analysis. 

Parameter Description   Range 

sccor Soil hydraulic conductivity 

1 – 50 the higher the 

value the higher 

conductivity 

roc2 roc4 River routing coefficients for quick and slow components 
1-50 (1 = quick routing; 

50 = slow routing 

cncor Curve number 0.75 – 1.25 

prcor Precipitation 0.8 – 1.2 

abf 
Alpha factor for groundwater. This parameter characterizes the ground water 

recession 
0.0005 – 0.95 

revapc 
Fraction of recharge that “re-evaporates” directly from the shallow 

groundwater aquifer 
0 – 0.3 

rchrgc 
Deep aquifer percolation coefficient. The amount of water that is allowed to 

percolate from shallow into the deep aquifer 
0 – 1 

bff Base flow factor used to calculate return flow travel time 0.1 – 3 

tlrch Transmission losses riverbed 0 – 3 (0 = no losses) 

delay 

Groundwater delay (days). The time it takes for water leaving the bottom of the 

root zone until it reaches the shallow aquifer where it can become groundwater 

flow 

1 – 200 

revapmn 
Revap storage (mm). Shallow aquifer storage must exceed REVAPMN before 

groundwater flow can begin   

 

6.1.2 Calibration and validation of the SWIM model 

The calibration process involved finding model parameter values to obtain simulated flows as 

close as possible to observed flows. In this study, the parameters were calibrated for the whole 

watershed, not by HRU, at a daily time scale with the LULC map 1986. The values of the 

parameters used for each sub-basin during the calibration process is presented in Table 25.  
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Table 25: Parameter values calibrated in SWIM for each subbasin. 

Parameters Subbasins 

Name Definition 
Parameter 
default 

Parameter 
Min 

Parameter 
Max 

Koukoutamba  Boureya 
Dakka 
Saidou 

Bafing 

makana 
Manantali 

roc2 

River routing coefficients 
for quick and slow 
components  

3 1 50 6 6 6 6 6 

roc4 

River routing coefficients 
for quick and slow 
components  

3 1 50 7 7 7 7 7 

sccor 
Soil hydraulic conductivity 
(the higher the value the 
higher conductivity) 

1 1 50 2 2 2 8 8 

bff 
Base flow factor, used to 
calculate return flow travel 
time 

0.5 0.1 3 0.5 0.3 0.3 0.3 0.45 

abf 

Alpha factor for 
groundwater. This 
parameter characterizes the 
ground water recession 

0.001 0.0005 0.95 0.04 0.001 0.001 0.001 0.001 

delay 

Groundwater delay (days). 
The time it takes for water 
leaving the bottom of the 
root zone until it reaches 
the shallow aquifer where 
it can become groundwater 
flow 

2 1 200 50 50 50 50 50 

revapc 

Fraction of recharge that 
“re-evaporates” directly 
from the shallow 
groundwater aquifer 

0 0 0.3 0.02 0.15 0.15 0.1 0.1 

rchrgc 

Deep aquifer percolation 
coefficient. The amount of 
water that is allowed to 
percolate from shallow into 
the deep aquifer 

0 1 1 0.02 0.15 0.15 0.1 0.1 

revapmn 

Revap storage (mm). 
Shallow aquifer storage 
must exceed REVAPMN 
before groundwater flow 
can begin 

0     0.02 0.15 0.15 0.1 0.1 

tlrch 
Transmission losses, 
riverbed 

1.1 0 
3 (0 = no 
losses) 1 1.1 1.1 1 1 

 

The results presented in Table 26 and Figure 40 come from simulations carried out by SWIM 

after the parameterization, calibration and validation of the SWIM model on the Bafing 

watershed in Dakka Saidou at the Bafing Makana stations.  The results of the calibration show 

that the SWIM model reproduces the observed flow very satisfactorily. For the Bafing Makana 

station, the NSE, R2 and KGE values equal to 0.8 and a Pbias value of 15.4 (Table 26) are 
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obtained. For the station of Dakka Saidou, the NSE, R2 and KGE equal to 0.8 and an acceptable 

Pbias value of 20.5 (Table) are obtained. The model tends to overestimate peak flows but 

simulates low flows satisfactorily (Figure 40).  

The efficiency of the simulation decreases between the calibration and the validation in terms 

of the performance criteria. Nevertheless, the model's performance in validation respects the 

conditions of satisfaction (Table 26). In addition, the model overestimates the average flows 

between 15 and 20% in the calibration and up to 30% in the validation period. It is observed 

that improving the representation of peak flows leads to a deterioration in calibration 

performance and an overestimation of low flow. Similar conclusions were found for the 

Kayanga-Anambe watershed (Velingara/Senegal), where the results of SWAT model 

calibration showed that peak flows are overestimated, while flood and low-water flows are 

better represented. It has also been observed that attempts to improve the representation of peak 

flows lead to a deterioration in calibration performance, as well as an overestimation of low-

water flows.  This result may be due to the type of input data (soil data etc..) used for the 

modelling. According to visual examination and the performance criteria obtained during the 

calibration and validation process, the model satisfactorily simulates the hydrology of the 

Bafing watershed and can therefore be used to answer the questions of this study. The 

hydrographs of observed and simulated flows for calibration and validation are presented in 

Figure 40. 

Table 26: Performance of the model during calibration and validation with LULC of 1986 

Stations  Period Pbias NSE R2 KGE 

Bafing 

Makana 

Calibration 1979-1986 15.4 0.8 0.8 0.8 

Validation 1987-1993 27.7 0.8 0.8 0.7 

 

Dakka 

Saidou 

Calibration 1979-1986 20.5 0.8 0.8 0.8 

Validation 1987-1993 28.5 0.8 0.8 0.7 
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Figure 40: Simulated discharges during the calibration period (1979-1986) and validation periods (1987-

1993). 

6.1.3 SWIM reservoir module configuration 

The results of the simulation of the Manantali dam are presented in Figure 41 and Table 27. 

Figure 41 shows the daily variations in simulated and observed inflows and outflows of the 

dam. The graphical comparison and the corresponding statistical indices show that the model 

satisfactorily reproduces the dynamics of inflows, outflows, and the water level of the 

Manantali dam (Table 27). Observed hydropower generation data were unavailable to validate 

the hydropower simulated by the SWIM model.  

Table 27: Comparison between the observed and simulated inflow, outflow and water level of 
the Manantali dam 

Period Dam Pbias NSE R2 KGE 

Calibration 

(2003-2006) 

Inflow -8.5 0.63 0.497 0.749 

Water level -0.3 0.171 0.541 0.582 

Validation 

(2007-2009) 

Inflow -5.9 0.729 0.657 0.85 

Water level -0.4 0.6 0.672 0.822 
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Figure 41:Comparison between the observed and simulated inflow/outflow of the Manantali 

dam 

 

6.1.4 Hydrological water balance 

The water balance shows that out of an annual average of 1140 mm of precipitation, about 126.3 mm 

returns to the atmosphere by evapotranspiration. The stream flow as simulated by SWIM totals 5516.4 

m3/s which is divided into direct runoff (190.1 m3/s), lateral flow into the soil (331.2 m3/s) and 

percolation from shallow aquifers (1184.5 m3/s).  
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Table 28: Water Balance 

Year 

        

Precipitation 

(mm) 

          

Percolation 

(mm) 

    PET 

(mm) 
Groundwater 

Runoff 

(m3/s) 
Seepage 

1979 1122.6 1092.1 120.8 1609.2 6206.7 313.9 

1980 1194.5 1326.6 125.8 1874.4 5511.5 347.2 

1981 1245.9 1358.0 124.6 2016.1 5935.0 367.5 

1982 1136.7 1050.4 125.0 1567.8 5837.3 327.9 

1983 971.3 778.7 128.1 1212.1 5335.3 269.6 

1984 969.5 765.3 127.9 1036.5 4836.2 242.4 

1985 1079.3 1176.6 128.2 1613.5 4498.2 292.8 

1986 1125.7 1129.9 124.7 1576.4 5451.1 312.2 

1987 1095.3 1099.9 127.8 1579.3 5354.1 302.6 

1988 1230.6 1461.2 127.1 2052.6 5199.9 360.1 

1989 1275.5 1577.9 127.1 2254.5 5985.4 396.5 

1990 1132.0 1185.7 128.4 1922.5 5706.8 355.6 

1991 1211.8 1431.7 128.2 2018.7 5592.6 380.4 

1992 1098.8 1096.3 125.6 1788.3 5583.0 344.6 

1993 1210.5 1237.4 125.1 1763.0 5712.9 354.3 

Mean 1140.0 1184.5 126.3 1725.6 5516.4 331.2 

6.2 Futures impacts on the hydrology of the Manantali dam 

6.2.1 Impact of climate change on the hydrology of the Manantali dam 

To analyze only the impact of climate change on the hydrology of the Manantali dam, the 
SWIM and dam module were simulated with the assumption that LULC of 1986 remains 
unchanged for future periods (P1, P2).  The results are presented in Table 28 and Figure 42.  

• On an annual scale 

The inflows into the Manantali dam follow the general trends of precipitation projections. In 

the near future (P1), the inflows are projected to either increase by 6% under ssp126 or decrease 

by -1% under ssp370 (Table 28). The outflow of the Manantali dam is also projected to increase 

by 7% under ssp 126 or decrease by -1% under ssp 370 in the near future (P1). In the far future 

(P2), a decrease of inflows by 4% and 8% under ssp126 and ssp370, respectively is projected. 

The outflow of the Manantali dam is also expected to decrease by -7% and -15 % respectively 

under ssp 126 and ssp 370 (Table 28). Consistent with the temperature projections, 

evapotranspiration (Eta) over the Manantali dam is projected to increase by 3% under the ssp 
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126 and the ssp 370 in the near future and by 3% and 5% respectively under the ssp 126 and 

the ssp 370 in the far future (P2). 

Table 29: Hydrology (water balance) at the Manantali dam under climate change (DS1) at an 

annual scale.  

ssp 126 

Period 
Pr 

(mm) 
Inflow (m3/s) Outflow (m3/s) 

ET 

(mm) 

Seep 

(mm) 

P0 (1984-2014) 443 9213.2 7848.1 860 897.1 

P1 (2035-2065) 445 9765.1 8364 889.2 909.5 

P2 (2066-2095) 423.8 8633.5 7272.9 886.3 858.3 

ssp 370 

Period 
Pr 

(mm) 
Inflow (m3/s) Outflow (m3/s) Et (mm) 

Seep 

(mm) 

P0 (1984-2014) 443 9213.2 7848.1 860 897.1 

P1 (2035-2065) 440.1 9130.5 7735.5 885.7 894.9 

P2 (2066-2095) 407.6 7988 6700.8 906.2 824.1 

 

• On a monthly scale 

Due to the concentration of precipitation during the rainy season, it is important to project 

seasonal changes in water resources in the basin associated with future climate change. The 

seasonal flow shows more clearly the impacts of future climate change on the monthly flow.  

In the near future, the results indicate an increase in inflow during the rainy season (from May 

to October) of 7% for ssp 126, while there is no change in inflow for ssp 370 (Table 28 and 

Figure 42). An increase in inflow of 1% for ssp 126 and a decrease of -7% ssp 370 are projected 

during the dry period.  

In the far future, the general trend indicates a decrease in inflow for all seasons (Figure 42). 

However, the decrease is observed more during the dry season than during the rainy season. It 

should also be noted that large relative changes in dry periods are not significant relative to 

annual flows.  
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(a) Near future 

 

(b) Far future 

 

Figure 42: Variations in mean monthly inflow for (a) the near future (P1: 2035-2065) and (b) 

far future (P2: 2065-2095) compared to the reference period (P0: 1984-2014) under ssp 126 and 

ssp 370. 

6.2.2 Impact of Land use/land cover change under reference period on the hydrology of 

the Manantali dam 

The simulation of the SWIM and dam module was performed considering the LULC change 

from 1986 to 2020 and from 1986 to 2050 using the climate during the reference period (P0), 

to study only the impact of LULC change on the hydrology of the Manantali dam.  The results 

show that changes in monthly, seasonal and annual flows are significantly affected by changes 

in LULC. Indeed, the results indicate a reduction in annual flows of – 5.7% (Table 29).  During 

the rainy season, a decrease of -5% and during the dry season, a decrease of -12% is simulated 

(Figure 43). There is a reduction in the outflow of the Manantali dam, which is consistent with 

the decrease in inflow. Evapotranspiration (Eta) over the Manantali dam will not vary with the 

LULC change.  
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Table 30: Relative changes in the Manantali dam’s hydrology based on LULC change from 

1986 to 2020 and from 1986 to 2050 in the reference period (P0)  

Water balance 

component 

LULC 

(1986) 

LULC 

(2020) 
Relative change (%) 

LULC 

(2050) 

Relative change 

(%) 

Pr (mm) 443 443 0% 443 0% 

Inflow (Mm3) 9213.2 8638.5 -5.7% 8755.6 -5% 

Tot_in (Mm3) 9663 9088.3 -6% 9205.5 -5% 

Outflow (Mm3) 7848.1 7296.6 -7% 7408.3 -6% 

Eta 860 875.9 2% 877 2% 

Inflow (Rainy season 

m3/s) 
2775.8 2638.8 -5% 2697.2 -3% 

Inflow (dry season 

m3/s) 
673.4 594.5 -12% 575.2 -15% 

 

 

Figure 43: Variations in mean monthly inflow based on LULC change from 1986 to 2020 and 

from 1986 to 2050 under the reference period (P0) 
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6.2.3 Combined impact of climate change and LULC on the hydrology of the Manantali 

dam 

The SWIM and dam module was simulated with LULC map from 1986 to 2050 and climate 

data under ssp 126 and ssp 370 as input data to analyze the combined impact of climate change 

and LULC change on the hydrology of the Manantali dam.  

In the near future, the annual inflows are projected to increase by 1% under ssp126 or decrease 

by -6% under ssp370 (Table 30). The results indicate an increase by +3% change in inflow 

under ssp126 and a decrease by -3% during the rainy season under ssp370. A decrease in inflow 

of -12% for ssp126 and -19% for ssp370 is projected during the dry season (Figure 45). In the 

far future, the general trend indicates a decrease in the annual inflow for both scenarios (Table 

30).   In the near future, the annual outflows are projected to increase by 0.4% for ssp 126 and 

to decrease by -7% for ssp 370. In the far future, the annual outflows are projected to decrease 

by -12% for ssp 126 and -20% for ssp 370. Evapotranspiration (Eta) over the Manantali dam is 

projected to increase under the ssp 126 and the ssp 370 in both futures.   

 

Tableau 31: Relative changes in the Manantali dam's hydrology based on LULC change from 

1986 to 2050 and climate change during the near future (P1:2035-2065) and the far future 

(P2 :2065-2095) compared to the reference period (P0) 

Water balance 

component 

P0 (LULC 

1986) 

P1 (LULC 2050) P2 (LULC 2050) 

ssp126 

Relative 

change 

(%) 

ssp370 

Relative 

change 

(%) 

ssp126 

Relative 

change 

(%) 

ssp370 

Relative 

change 

(%) 

Pr (mm) 443 445 1% 440.1 -1% 423.8 -4% 407.6 -8% 

Inflow (BCM) 9213.2 9260 1% 8661 -6% 8257.8 -10% 7550 -18% 

Total_in 

(BCM) 
9663 973 1% 9107.5 -6% 8692.5 -10% 7965.1 -18% 

Outflow 

(BCM) 
7848.1 7878 0.40% 7289.6 -7% 6918.1 -12% 6296.9 -20% 

Eta 860 905.9 5% 903.3 5% 904.7 5% 920.6 7% 

Inflow (Rainy 

season m3/s) 
2776 286 3% 2684.524 -3% 2607.159 -6% 2342.398 -16% 

Inflow (dry 

season m3/s) 
673 591 -12% 545.040 -19% 511.317 -24% 470.753 -30% 
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The separation of the effects of climate change and LULC change on the inflow shows that 

LULC change significantly affects annual flow. However, climate change has a more 

significant effect on the annual flow than LULC changes. In the near future (P1) under ssp 126, 

an increase of 1% in annual flow is projected. The analysis of climate and LULC's contribution 

to the annual flow reveals that the precipitation induces an increase in flow, while LULC 

induces a decrease in flow (Figure 44). In the near future (P1) under ssp 370, an annual decrease 

is projected in the flow induced by LULC and climate (Figure 44).  

These results are consistent with the expected change in LULC and the climate projection in 

the Bafing watershed. Indeed, the period between 1986 and 2050 corresponds to a remarkable 

increase in vegetation and cultivated area, favoring processes such as infiltration at the expense 

of runoff.  Precipitation is expected to increase by 1%. The results presented in Figure 45 

indicate that the impact of climate change is more significant during the rainy season, while the 

effects of LULC are more important during the dry season.  

 

  

Figure 44: Relative contributions of climate (ssp 126, ssp 370) and LULC (LULC 1986, LULC 

2050) on the inflow evolution at the Manantali dam in the near future (P1). The negative relative 

contributions indicate that the corresponding factor induces a decrease in inflow, while positive 

contributions indicate that the factor contributes to an increase in inflow. 
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a) P1 

 

 

b) P2 

 

 

Figure 45: Monthly inflow variation in the Manantali dam according to LULC 2050 under ssp 126 and ssp 370 

 a) in the near future (P1: 2035-2065) compared to the reference period (P0:1984-2014) and LULC 1986; 
 b)  in the far future (P1: 2065-2095)  compared to the reference period (P0:1984-2014) and LULC 1986. 

 

6.2.4 Impact of future dam developments on the hydrology of the Manantali 

The simulation of the SWIM and dam module was carried out considering the LULC of 1986 

and the climate data during the reference period (P0: 1984-2014) to assess only the impact of 

future development (DS2, DS3) on the hydrology of the Manantali dam. On an annual scale, 

the development of future dams will reduce the inflow of the Manantali dam by -6% for DS2 

and -12% for DS3 (Table 31). Future dams will lead to a sharp increase in monthly flows from 

January to June, from   54% to 508% for DS2 and from 64% to 580% for DS3.  

On a monthly scale, future dams will decrease in the inflow of the Manantali dam from July to 

December from -3 to -34% for DS2 and from -4% to -42% for DS3 (Figure 46). During the 

rainy season, September is more affected by the decrease of the inflow of the Manantali dam, 

with a reduction of -34% and -42%, respectively, for DS2 and DS3 compared to DS1 (Figure 

46). the results show there is no change in evapotranspiration (Eta) of the Manantali dam with 
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Koukoutamba and Boureya dam (DS3) (Table 31).  The results are presented in Table 31, 

Figure 46. 

 

Table 32: Relative changes (%) in the hydrology of the Manantali dam according to the 

construction of the Koukoutamba (DS2) and Koukoutamba and Boureya (DS3)   dams during 

the reference period (P0: 1984-2014). 

Water 

balance 

component 

DS1 DS2 
Relative 

change (%) 
DS3 

Relative 

change (%) 

Pr 443 443 0% 443 0% 

Inflow 9213.2 8692 -6% 8112.5 -12% 

Tot_in 9663 9141.9 -5% 8555.7 -11% 

Outflow 7848.1 7313.1 -7% 6838.4 -13% 

Eta 860 862 0% 828 -4% 

 

 

Figure 46: Monthly inflow variation of the Manantali dam with the Koukoutamba dam (S2)  

and Koukoutamba and Boureya (S2 and S3) during the reference period (P0: 1984-2014). 
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6.3 Conclusion  

Since water is a fundamental component of the planet's life support system, establishing a 

sustainable water resources management system is essential. Including sustainability criteria in 

water resources management requires considering the changing and uncertain nature of our 

socio-economic and natural environments, such as climate, LULC, and water management 

infrastructure. The objective of this chapter is to assess the effects of future changes (climate, 

LULC, new dams) on the hydrology of the Manantali dam in the near future (P1:2035-2065) 

and the far future (P2: 2065-2095) compared to the reference period (1984-2014) under ssp126 

and ssp 370, LULC change (1986, 2020, 2050) and the future development scenarios of planned 

dams.  

The SWIM model was chosen because it was considered a suitable hydrological model in the 

Bafing watershed. It has a dam module capable of representing the changing conditions 

generated by climate change, LULC change and taking into account existing and future dams 

in the basin. The modelling results show that the SWIM model and the dam module adequately 

represented past flow dynamics and dam management. The Nash-Sutcliffe efficiency (NSE) 

and Kling-Gupta efficiency (KGE) between 0.8 and 0.7 demonstrate the model's ability to 

simulate river flow, although the model overestimates it.  

Regarding the possible impacts of climate change, the median of MME shows differences in 

how the hydrology of the Manantali dam is projected to change, depending on the future 

projections, but also the different scenarios used (ssp 123 and ssp 370). The results of the 

analysis of the impact of climate change on the inflow of the Manantali dam indicate a variation 

of inflow of 6% for ssp 126 and -1% for ssp370 in the near future. A decrease in inflow is 

expected for both scenarios in the far future compared to the reference period. There are 

significant differences between our results and those of Bodian et al. (2018) and Mbaye et al. 

(2016) on the impacts of climate change on water resources in the Bafing watershed. Bodian et 

al. (2018) investigated the effect of climate change on the Bafing watershed by using six GCM 

and two scenarios (RCP4.5 and RCP8.5) in 2050 compared to the reference period (1971-2000). 

The results showed that the mean of MME predicted a decrease in annual flow of -8% (RCP4.5) 

and -16% (RCP8.5) in the Bafing watershed. Mbaye et al. (2016) assessed the potential impacts 

of climate change on water resources and the effect of correcting statistical biases on the 

projected climate change signal in hydrological variables over the Upper SRB at the end of the 

21st century (2071-2100) compared to the historical period (1971-2000). Their results indicate 
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that no change in flow is expected in the highlands of Guinea corresponding to the study area. 

These differences could be caused by the selection of different sets of GCMs, scenario 

assumptions, future periods, and the reference period used to assess the impact (Liersch et al., 

2020). These discrepancies in results highlight the significant uncertainties of the impact of 

climate change on water resources. This proves that considering climate change in impact 

assessments remains a challenge in the Bafing watershed. This has important implications for 

climate change considerations for decision-makers formulating long-term strategic 

development plans.  

The change in LULC has a negative effect on the inflow of the Manantali dam. This situation 

can be explained by the increase of vegetation and cultivated area and the decrease of 

bareground. Indeed, the results of the detection of post-classification changes have shown that 

the area occupied by vegetation has steadily increased, from 36% to 44% between 1986-2020 

and 49% between 1986-2050. In 1986, the area covered by bareground was the most dominant 

LULC class, covering 60% of the watershed. Over the past 34 years, this area has gradually 

decreased to almost half, from 60% to 30%. The projected increase in vegetation and cultivated 

area (at the expense of bareground), have a lower runoff potential. Indeed, according to 

Descroix (2020), Guinean and Sudanese areas covered with dense vegetation are less prone to 

runoff.  

A comparison between the impact of climate change and LULC change on the inflow of the 

Manantali dam showed that although LULC change has a significant impact on the inflow of 

the Manantali dam, but it is lower than the climate change impact. Separating the effects of 

climate and LULC change on the inflow of the Manantali dam shows that the two factors do 

not affect the evolution of the inflow of the Manantali dam in the same way. For example, under 

ssp 126, in the near future, climate tends to increase the inflow; as opposed to LULC, which 

tends to decrease the inflow. Climate becomes dominant in the flow control, resulting in 

increased flow. These results confirm the hypothesis of Albergel (1987)  and Bernadette Nnomo 

(2016) that for a Sudanian watershed such as the Bafing watershed, the decrease in flow is an 

effect of climate deterioration rather than LULC change. 

The results of the study also show that the exploitation of future dams will lead to a reduction 

of inflow during the wet season and an increase of inflow during the dry season. On an annual 

scale, they will reduce the inflow of the Manantali dam. Notwithstanding some of the negative 

effects of the planned dams, they will increase water storage and improve water management 
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in the Bafing watershed. Considering these changes with uncertain effects, an adaptive and 

participatory strategy is needed for sustainable water management in the Bafing watershed. 
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Chapter 7: Assessment of the potential impacts on the hydropower potential in the Bafing 

watershed 

This chapter analyzes the impacts of climate change and land use/land cover change (LULC 

change) on the hydropower potential (HPP) in the Bafing watershed. The Swim model was 

simulated by using ten GCMs data and the LULC maps 1986, 2020 and 2050 as input data.  

The analysis was done by considering existing dam (Manantali) and planned dams 

(Koukoutamba and Boureya). A separation method was used to distinguish the respective 

contributions of climate change and LULC change, which are considered independent. A 

separation method consists of changing one factor at a time (either climate or LULC) by keeping 

the other constant (Fenta Mekonnen et al. 2018) and combining the two factors (climate and 

LULC). Additionally, relevant performance indicators such as spill, and probabilities of 

exceedance (P99, P95, P90) were used to compare future scenarios (the near future (P1:2035-

2065) and the far future (P2:2065-2095); LULC 2050) with the reference period (P0: 1984-

2014; LULC 1986). 

7.1 Impact of climate change on the hydropower potential at the Manantali dam 

The SWIM model and dam module were simulated with the assumption that LULC from 1986 

remains unchanged for the future period (P1, P2) to analyze only the impact of climate change 

on hydropower generation at the Manantali dam.  The results are presented in Table 32 and 

Figure 47.  

On an annual scale, the projected HPP is consistent with the inflow projections under ssp 126 

and ssp 370 (Figure 47).   

In the near future, a change in the annual HPP of the Manantali dam of +3% for ssp126 and -1 

% for ssp370 is projected. However, there is an increase of P 95, P 90 and P 99 for ssp 126 and 

ssp 370, indicating an improvement in the reliability of the hydropower potential. There is also 

a 50% increase in the spilled volume for ssp126 and 7% for ssp370. This reflects an increase in 

peak inflows above the dam's storage capacity (Table 32).  

In the far future, the annual HPP of the Manantali dam is expected to decrease by -8% for ssp 

126 and -14% for ssp 370. There is also a decrease of P 95, P 90 and P 99 for ssp126 and ssp370, 

consistent with the reduction in annual inflow in the Manantali dam. Interestingly, there was an 

increase in the volume spilled of 12% for ssp 126 and a decrease of 54% for ssp 370. This 
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reflects the fact that there is an increase in peak flows under ssp 126, which will not lead to an 

increase in annual HPP (Table 32).   

Table 33:  annual HPP at the Manantali dam under climate change (DS1) 

LULC 1986 P0  

P1 P2 

ssp 126 

Relative 

change 

(%) 

ssp 370 

Relative 

change 

(%) 

ssp 126 

Relative 

change 

(%) 

ssp 370 

Relative 

change 

(%) 

Pr (mm) 443 445 1% 440.1 -1% 423.8 -4% 407.6 -8% 

Inflow (BCM) 9213.2 9765.1 6% 9130.5 -1% 8633.5 -6% 7988 -13% 

Spill (%) 0.677 1.023 51% 0.726 7% 0.755 12% 0.313 -54% 

HPP GWh/y) 820 846 3% 814 -1% 757 -8% 702 -14% 

EP_90_(MW) 60.7 71.6 18% 60.5 -0.3% 54 -11% 43.7 -28% 

EP_95_(MW) 48 61.7 29% 52.5 9% 45.2 -6% 36.1 -25% 

EP_99_(MW) 35 48.1 37% 41.8 16% 34.5 -1% 25.8 -26% 

 

 

Figure 47: Projection of inflow and HPP of the Manantali dam in the near future (P1, left) and 
far future (P2, right) compared to the reference period under ssp 126 and ssp 370 

On a monthly basis, in the near future, HPP of the Manantali dam will increase for all months 

for ssp126 and except August, September, November and December for ssp370.  In the far 
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future, there is an overall decrease in HPP for all months for all scenarios (ssp 126, ssp 370) 

(Figure 48).  

Near future (P1) compared to reference period (P0) Far future (P2) compared to reference period (P1) 

  

Figure 48:Monthly HPP variation of the Manantali dam in the near future (P1, left) and the far future (P2, right) compared 
to the reference period (P0) under ssp 126 and ssp 370 

7.2 Impact of LULC change on the hydropower potential (HPP) at the Manantali dam 

To study only the impact of LULC change on the HPP of the Manantali dam, the SWIM 

simulation was performed considering the LULC change from 1986 to 2020 and from 1986 to 

2050 under the climate during the reference period (P0).  

The results show that monthly and annual HPP of the Manantali dam will be negatively affected 

by LULC change (Table, Figure). Indeed, the results indicate a change in the annual HPP of the 

Manantali dam of -5.7%, respectively, between 1986 and 2050 (Table 33). These findings can 

be explained by the result obtained with the analysis of the post-classification change detection 

between 1986, 2020 and 2050. The analysis and detection of post classification change reveals 

that the main conversions were from bareground to vegetation, cultivated area and settlement 

during the study period. Hence, bareground with high runoff coefficients was converted to 

vegetation and cultivated area with lower runoff coefficients. There is also a decrease in EP 95, 

EP 90 and EP 99, indicating a decrease in the reliability of hydropower potential. There is a 

decrease in the volume spilled, which is consistent with the reduction in the projected inflow. 

The same situation is noted on a monthly scale (Figure 49).   
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Table 34: Relative change in annual HPP according to LULC change between 1986-2020 and 

between 1986-2050 based on the reference period (P0: 1984-2014) 

Water balance 

component 
LULC 1986 LULC 2020 

Relative 

change (%) 
LULC 2050 

Relative 

change (%) 

Pr (mm) 443 443 0% 443 0% 

Inflow (BCM) 9213.2 8638.5 -6% 8755.6 -5% 

Spill (BCM (%)) 0.677 0.477 -30% 0.519 -30% 

HPP (GWh_a) 813.5 760.9 -6.5% 769.6 -5.7% 

EP_90_(MW) 60.7 54.6 -10% 56.9 -7% 

EP_95_(MW) 48 43.2 -10% 45.6 -5% 

EP_99_(MW) 35 30.6 -13% 32.9 -6% 

 

 

Figure 49: Projected change in monthly HPP according to LULC change between 1986-2020 
and between 1986-2050 based on the reference period (P0: 1984-2014) 

7.3 Combined impact of climate change and LULC change on the hydropower potential 
of the Manantali dam 

To analyze the combined impact of climate change and LULC change on the HPP at Manantali 

dam, the SWIM model was simulated with LULC map from 1986 to 2050 and climate data for 

the near future (P1) and far future (P2) under ssp 126 and ssp 370.    
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In the near future (P1), the annual HPP of the Manantali dam is projected to either increase 

by 3% under ssp126 or decrease by -4% under ssp370 (Table 34). Although the LULC change 

(only) reduces the HPP of the Manantali dam by -5% in P1 under ssp126, but due to the 

increase in precipitation (1%) and flow (6%), the combined climate and LULC simulations 

still project an increase of 3.2% in the HPP of the Manantali dam (Figure 50).  Under ssp 370, 

in the near future, both factors will affect the HPP of the Manantali dam in the same downward 

trend. These results suggest that the HPP of Manantali dam follows the general trends of 

climate change because the relative contribution of climate to the HPP of the Manantali dam 

is greater than that of LULC (Figure 50). The spilled volumes will either increase by 15% 

under ssp 126 or decrease by -18% under ssp370. P90, P95 and P99 values will either increase 

under ssp 126 or decrease under ssp370. 

 In the far future, the HPP of the Manantali dam is expected to decrease for ssp 126 and ssp 

370 (Table 34). The spilled volumes and the P90, P95 and P99 values will also decrease under 

ssp 126 and under ssp370. 

Table 35: Relative change in annual HPP according to LULC change between 1986 to 2050 

and CC in the near future (P1) and the far future (P2) compared to reference period (P0) under 

ssp 126 and ssp 370. 

Water 
balance 
component 

  P1 (LULC 2050) P2 (LULC 2050) 
P0  
(LULC 
1986) 

ssp 126 

Relative 
change 
(%) 

ssp 370 

Relative 
change 
(%) 

ssp 126 

Relative 
change 
(%) 

ssp 370 

Relative 
change 
(%) 

Pr (mm) 443 445 1% 440.1 -1% 423.8 -4% 407.6 -8% 

Inflow 
(BCM) 9213.2 9260.4 1% 8661 -6% 8257.8 -10% 7550 -18% 

Spill (BCM 
(%)) 0.677 0.778 15% 0.573 -18% 0.599 -12% 0.228 -66% 

HPP 
(GWh_a) 820 849 4% 771 -6.40% 777 -5.20% 659 -20% 

EP_90 (MW) 60.7 65.8 8% 54.1 -12.20% 50.7 -16% 40.6 -33% 

EP_95 (MW) 48 57.3 19% 47.3 -1% 43.5 -9% 33.9 -29% 

EP_99 (MW) 35 45.3 29% 38.1 8% 32.8 -6% 24.7 -29% 
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Figure 50: Relative contributions of climate (ssp 126, ssp 370) and LULC (LULC 1986, LULC 
2050) on the HPP evolution at the Manantali dam in the near future (P1). The negative relative 
contributions indicate that the corresponding factor induces a decrease in flow, while positive 
contributions indicate that the factor contribute. 

7.4 Impact of future dams on the hydropower of the Manantali dam 

The simulation of the SWIM and dam module was carried out considering the LULC map of 

1986 and the climate data during the reference period (P0: 1984-2014) to analyze only the effect 

of future dams (Koukoutamba and Boureya) on the HPP of the Manantali dam. 

On an annual scale, the results show that the construction of dams will reduce the HPP of the 

Manantali dam (Figure 51, Table 35). Indeed, the DS2 will reduce the HPP at the Manantali 

dam by -3%. SD3 will result in an annual reduction of -10% of the HPP at the Manantali dam 

(Figure 51). These results are consistent with the performance indicators obtained. The EP 90 

values decrease by -6% for DS2 and -12% for SD3, which shows a lower average production 

due to the decrease in the volumes of turbinated water in the long term.  

The results also show that the future dams (DS2 and DS3) positively influence the HPP at the 

Manantali dam and flood peaks. For instance, there is a decrease in spilled volume of -31% and 

-64% in DS2 and DS3, thanks to a substantial decrease in extreme high inflows buffered by the 

upstream storage. There is also an increase of P95 of 2% and 3%, respectively, in DS2 and DS3, 

which means an improvement in the reliability of the hydropower potential because the risk of 

water levels in the Manantali dam reaching the lower turbine threshold is reduced. 

-10.0% -5.0% 0.0% 5.0% 10.0%

ΔP  (climat) (mm)

Δq (climat) (m3/s)

ΔHPP  (climat) …

ΔQ (LULCC) …

ΔHPP  (LULCC) …

ΔQ (climat+ …

ΔHPP (climat+ …

Relative contribution (%)

P1 compared to P0 under ssp 126

-8.0% -6.0% -4.0% -2.0% 0.0%

ΔP  (climat) (mm)

Δq (climat) (m3/s)

ΔHPP  (climat) …

ΔQ (LULCC) (m3/s)

ΔHPP  (LULCC) …

ΔQ (climat+ …

ΔHPP (climat+ …

Relative contribution (%)

P1 compared to P0 under ssp 370



138 

 

 

Table 36: Relative changes in annual HPP according to future development scenario DS2 

(Manantali and Koukoutamba dams) and DS3 (Manantali, Koukoutamba and Boureya dams) 

compared to DS1 (Manantali dam) under the reference period (P0:1984-2014). 

Water balance 

component 
DS1 DS2 

Relative 

change (%) 
DS3 

Relative 

change (%) 

Pr 443 443 0% 443 0% 

Inflow 9213.2 8692 -6% 8112.5 -12% 

Spill BCM (%) 0.677 0.468 -31% 0.241 -64% 

GWh_a 820 793 -3% 727 -11% 

EP_90_(MW) 60.7 57.3 -6% 53.3 -12% 

EP_95_(MW) 48 48.9 2% 49.4 3% 

EP_99_(MW) 35 38.7 11% 37.8 8% 

 

On a monthly basis, there is a decrease in the HPP of the Manantali dam for all months except 

November, December, January, February, and August for DS2 and November, December and 

January for DS3 compared to DS1 (Figure 51).  
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Figure 51: Monthly relative changes (%) on the HPP of the Manantali dam under DS2 and DS3 
compared to DS1 based on the reference period (P0: 1984-2014) 

7.5 Combined impact of climate change, LULC change and future dams developments on 

the HPP of the Manantali dam 

The result of section 7.3, based on the combined impact of climate change and LULC change 

showed that the HPP of the Manantali dam follows the general trends of climate change, 

although LULC influences HPP. Therefore, in this section, the impact analysis is based on 

climate change and the development of future dams. 

On an annual scale, the result shows that climate change and the future dams (DS2, DS3) will 

have a negative impact on the HPP of the Manantali dam (Table 36). In the near future (P1), in 

DS3 compared to DS1, the HPP of the Manantali dam is expected to decrease by -6.7% under 

ssp 126 and -11.8% under ssp 370, which is consistent with the decline in E90 values. Under 

climate change alone in P1 under ssp126, there would normally be a 6% increase in the inflow, 

but due to upstream dams, the positive trend will turn into a negative one (-6.7%). Under climate 

change alone, in the near future under ssp 370, there would normally be a decrease of -1% in 

HPP; but due to upstream developments, the decrease will be accentuated to -11.8% in the 

Manantali dam. Despite a decrease in HPP, there is an improvement of the reliability in HPP 

with an increase of 13% under ssp 126 and 8% under ssp 370 of the values of EP 95, which 

means that the risk that the water level in the Manantali dam reaches the lower turbine threshold 

decreases. The spilled volumes will decrease by -42% under ssp 126 and -60% under ssp370. 

This decrease in spilled volumes is caused by a substantial decrease in extreme high inflows 

due to upstream storage. 
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In the far future (P2), in DS3 compared to DS1, the HPP of the Manantali dam is expected to 

decrease by -17% and -30% under ssp126 and ssp370, respectively, with a decrease of EP 90 

and EP 95. There is also a decrease in spilled volume of -62% and -91% under ssp126 and 

ssp370, respectively, led by the inflow decrease. The risk of the water levels in the Manantali 

dam reaching the lower turbine threshold is high, especially under scenario ssp370. 

 

Table 37: Projected annual HPP according to future development scenario DS3 (Manantali 

dam, Koukoutamba, and Boureya) compared to DS1 (Manantali dam) and climate change in 

the near future (P1:2035-2065) and the far future (P2:2065-2095) compared to reference period 

(P0:1984-2014) under ssp 126 and ssp 370 

Water 

balance 

component 

P0  P1 (DS3) P2 (DS3) 

DS1   DS3 ssp 126 ssp 370 ssp 126 ssp 370 

Pr (mm) 443 443 445 440.1 423.8 407.6 

Inflow 

(BCM) 
9213.2 8112.5 8597.7 7996.8 7522.2 6935.1 

Spill (BCM 

(%)) 
0.677 0.241 0.393 0.272 0.254 0.061 

HPP (GWh/y) 820 727 779 723 661 592 

EP_90 (MW) 60.7 53.3 60.1 56.4 50.6 43.2 

EP_95 MW) 48 49.4 54.4 51.9 47.1 37.8 

EP_99 (MW) 35 37.8 48.6 40.5 42 29.7 

Reliability 

(%) 
86 64 82 72 63 31 

 

7.6 Combined impact of climate change and LULC change on the hydropower potential 

of the Bafing Makana based on the existing (Manantali) and planned dams (Koukoutamba and 

Boureya) 

The construction of future dams (DS2 and DS3) increases the annual HPP in the basin (Figure 

52,53). However, while investment in future dams brings benefits, these benefits are very 

different from those achieved without climate and LULC changes.  
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Indeed, in the near future, the annual HPP of Koukoutamba, Boureya and Manantali dams will 

increase under ssp126 or decrease under ssp370 (Table 37). In the far future, the annual HPP 

of Koukoutamba, Boureya and Manantali dams will decreases in both scenarios, the loss will 

be more accentuated under ssp 370 (Table 37). LULC change from 1986 to 2050 will reduce 

the annual HPP of Koukoutamba, Boureya and Manantali dams (Table 37).  

 

Table 38: The annual HPP (GWh/y) of the Bafing watershed under three development scenarios 

(DS1, DS2, DS3), based on CC for the near future (P1: 2035-2065) and the far future (P2: 2065-

2095) under ssp 126 and ssp 370 and LULC change from 1986 to 2050. 

Development 

scenarios 
Dams 

P0 

(LULC 

1986) 

P0 

(LULC 

2050) 

P1 (LULC 2050) P2 (LULC 2050) 

SSP1-2.6 SSP 370 SSP1-2.6 SSP 370 

DS1 Manantali 820 774 849 771 777 659 

DS2 
Manantali  793 742 782 740 674 619 

Koukoutamba  879 911 934 890 851 783 

DS3 

Manantali  727 675 726 563 609 454 

Koukoutamba  879 911 934 890 851 783 

Boureya 601 617 631 604 580 538 
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Figure 52: Simulated hydropower potential according to the development scenarios 3 (DS3) 
based on CC for the near future (P1: 2035-2065) and the far future (P2: 2065-2095) compared 
to reference period (P0: 1984-2014) under ssp 126 and ssp 370 and LULC. 
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Figure 53: Simulated hydropower potential according to the development scenarios (DS1, DS2 
and DS3) for the near future (P1: 2035-2065) and the far future (P2: 2065-2095) based on ssp 
126 and ssp 370 compared to reference period (P0: 1984-2014). 
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7.7 Conclusion 

Hydropower is a low-cost, well-established technology that may be an essential element of 

climate change adaptation in spite of its environmental and social implications (Berga, 2016). 

Climate and weather conditions significantly impact water resources and hydropower 

generation (Wasti et al., 2022). The analysis of the impacts of climate change and LULC change 

on the hydropower potential (HPP) and the management of the new dams in the face of future 

changes (climate, LULC) gives relevant information to decision-makers.  

Regarding the possible impacts of climate change on the hydropower potential (HPP) of the 

Manantali dam, the median (MME) projects a reduction in future HPP except in the near future 

under ssp126 where an increase of 3% is projected despite the evaporative losses caused by the 

increase in temperature that are offset by the increase in precipitation during this period. The 

climate change projection over the Bafing watershed can explain these results. Indeed, the result 

of the projection of the GCMs from ISIMIP3b indicates that an increase of +1 % in precipitation 

would result in an increase of +1% in flow under ssp 126, and a decrease of -1% would lead to 

a decrease of -6% in flow under ssp 370, in the near future (P1). In the far future (P2), both 

scenarios project a decrease in precipitation that will lead to a decrease in flow. Temperature is 

expected to increase in the near and the far future under ssp 126 and ssp 370 compared to the 

reference period. Uncertainties about the projection are high in the near future. The future of 

the Bafing watershed depends heavily on global pathways. According to the moderate scenario 

(ssp 126), the world is moving progressively, but pervasively, towards a more sustainable path, 

with an emphasis on more inclusive development that respects perceived environmental limits. 

According to the ssp 370, the focus is on competitiveness and regional conflicts, instead of 

broder development leading to severe environmental degradation in some regions.  

There is also a projected increase in spilled volume, except in ssp 370 in the far future, which 

may trigger an increase in flooding downstream that poses a severe threat in the Senegal River 

Valley. Indeed, the Senegal River valley experienced flooding in 1999 and 2003 due to heavy 

rainfall, leading to frequent releases of water from the Manantali dam and uncontrolled flows 

from the Bakoye and Faleme tributaries (OMVS, 2013). Emphasis should also be laid on the 

fact that retaining water in the dam for hydropower generation may conflict with maintaining a 

free volume for flood protection due to an elevated risk of flooding. 

Regarding the possible impacts of LULC change on the HPP of the Manantali dam, the results 

show that LULC change will have a negative impact on the inflow, leading to a decrease of 

HPP of the Manantali dam. These findings can be explained by the conversion from bareground 
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(with high runoff coefficients) to vegetation and cultivated area (lower runoff coefficients) 

during the study period (1986, 2020, 2050). It is largely documented that surface water 

dynamics are highly dependent on soil and vegetation conditions. The vegetation is dense in 

the Sudanian and Guinean regions where the Bafing watershed is located; translating into runoff 

resistance.  

Concerning the impacts of climate change and LULC change on the HPP of the Manantali dam, 

a comparison between the two factors showed that the HPP of the Manantali dam follows the 

general trend of climate change. The relative contribution of climate to the HPP of the 

Manantali dam is greater than that of LULC. Indeed, the combined CC and LULC simulations 

still predict an increase in the HPP of the Manantali dam of 3.2%, even if the LULC change 

only reduces the HPP of the Manantali dam by -5% in P1 under ssp126. This increase of the 

HPP of the Manantali dam is due to higher precipitation (1%) and flow (6%) in P1 under ssp126. 

These results confirm the hypothesis of Albergel (1987)  and Bernadette Nnomo (2016) that for 

a Sudanian watershed such as the Bafing watershed, the decrease in flow is an effect of climate 

deterioration rather than LULC change.  

The impacts of the future dams on the HPP of the Bafing watershed are mixed. On the one 

hand, the upstream dams will lead to a decrease in HPP although the operation of the Manantali 

dam has been adjusted after the incorporation of the two planned dams. On the other hand, the 

upstream dams will improve the reliability of the HPP of the Manantali dam by reducing the 

risk that the water level in the Manantali dam reaches the lower turbine threshold. They will 

also contribute to reducing the spilled volumes  by controlling peak flow upstream of the dam, 

thus reducing the risk of flooding in Bakel.  The joint operation of the three dams increases the 

mean annual HPP in the Bafing watershed from 820 GWh/y (Manantali) to 2207 GWh/y 

(Manantali, Koukoutamba and Boureya). 

As for the possible impacts of climate change on the future dams, the results suggest that climate 

change will have a significant impact on the HPP. Indeed, the results show that although the 

planned dams will increase the HPP in the basin, climate change will negatively affect them 

except in the near future (P1) under ssp 126. These results are consistent with those of 

Obahoundje et al. (2021). According to Nassopoulos (2013), the increase in storage capacity 

related to the construction of planned dams is the first option for adaptation to climate change 

for water availability despite the negative social and environmental consequences.  Thus, 

operational rules must be dynamically adjusted to adapt to climate change. Our results are 

consistent with the findings of Padiyedath Gopalan et al. (2021) which suggest that additional 
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coping strategies are needed. One adaptation technique is to improve the operation of these 

three dams through an optimization program. Optimizing the programming of a group of 

hydropower dams on a basin has various advantages. It allows the full use of water resources 

at all scales and the adjustment and compensation of the effects of interannual climate variables 

on each power plant (Shu et al., 2018).  The other option is to study the complementarities 

between hydro, solar and wind energy at the local or regional scale. (Sterl et al., 2018,2020) 

highlight that the appropriate management of existing and future hydropower plants in West 

Africa and the adoption of a new common energy policy promoting an energy mix that 

prioritizes renewable energies, namely hydropower, solar and wind, are essential to exploit 

West Africa's renewable energy potential optimally.  
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Chapter 8: General conclusion and perspectives  

Chapter 8 presents the main conclusions of our research, its contributions to knowledge, its 

limitations and expectation for future research. 

8.1 Conclusion and contributions to knowledge  

The main objective of the study was to analyze the impacts of climate change and land use/land 

cover on the water availability and the hydropower potential in the Bafing watershed 

considering the existing (Manantali) and future dams (Koukoutamba and Boureya). The 

proposed approach is based on the "Water-Energy" Nexus. 

To this end, three specific objectives were established right at the onset.  

The first specific objective was to evaluate the performance of ten (10) bias-adjusted and 

downscaled Global Climate Model (GCM) of CMIP 6 from ISIMIP 3b in reproducing the 

observed climate (1979-2014) and to analyze future temperature and precipitation trends for the 

near future (P1: 2035-2065) and the far future (P2: 2065-2095) compared to the reference period 

(P0: 1984-2014) under the two climate scenarios (ssp 126 (moderate) and ssp 370 (medium-

high-end)). 

To achieve this objective, the two-precipitation products W-era5 (reanalysis) and CHIRPS 

(satellite) were compared to observed precipitation at the Bafing Makana. This was done 

because observation data have a low spatial coverage in the Bafing watershed and are 

insufficient for modelling purposes in terms of time series length (1979-1986 and 2001-2003) 

and data gaps. The performance of the two products to represent observed patterns was analyzed 

based on statistical indicators, such as R2, RMSE, Pbias, NSE,  Taylor diagram at the monthly 

and annual time steps and seasonal analysis. The comparison result indicates that W-era5 

represents the observed precipitation pattern more accurately than CHIRPS. Indeed, data from 

the W-era5 era are perfectly in line with data from available station. Thus, the performance of 

GCMs from ISIMIP 3b using the W-era5 dataset as reference data was also evaluated because 

the bias-adjustment and downscaling were conducted with W-era5. The statistical findings 

show that the GCMs can accurately reproduce the temperature and precipitation of W-era5. The 

results from the Taylor diagram (RMSE, correlation) agree with the statistical findings. The 

outcome also showed that GCMs can fairly reproduce the unimodal structure of the 

precipitation, the bimodal structure of the temperature, and the historical trend of the W-era 

precipitation and temperature.  
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However, underestimation or overestimation is observed due to enduring biases in some 

models. According to the statistical analysis results, the median of MME is more effective at 

reproducing the reference data than the mean of MME and the individual GCM. These findings 

suggest that median of MME can produce accurate estimates and can successfully simulate 

precipitation and temperature of W-era5. Therefore, the median of MME was used to analyze 

and describe the future trends in the near future (P1) and the far future (P2) compared to the 

reference period (P0). According to the median (MME), an increase in temperature is projected, 

in the near future and the far future under ssp 126 and ssp 370. On the other side, there are many 

uncertainties associated with the precipitation projection. In fact, precipitation is projected to 

increase under ssp126 or decrease under ssp 370 in the near future (P1). In the far future (P2), 

precipitation is expected to decrease under both climate scenarios (ssp126 and ssp 370).  

The second specific objective was to analyze the past and future spatio-temporal changes in 

LULC from 1986 to 2050. To come up with this, LULC changes over a 34-year period (1986, 

1986, 2020) and simulated future changes in LULC in 2050 with the status quo (BAU) 

assumption (1986-2020) were evaluated. Landsat images from 1986, 2006 and 2020, image 

processing (index calculation), supervised classification with Random Forest (RF), and 

classification accuracy were used in Google Earth Engine (GEE) to establish LULC maps for 

each corresponding year. Five LULC classes ((1) settlement, (2) water, (3) vegetation, (4) 

cultivated area, (5) bareground) were used in the classification. The results of the classified 

LULC maps indicate that RF results provide very satisfactory classification with good accuracy. 

The results of the post-classification change detection technique from 1986-2020 show that 

significant change in LULC happened between 1986 and 2020. Indeed, the study shows that 

bareground has decreased by almost half in favor of settlement, cultivated area, vegetation and 

water. In the context of socioeconomic growth, population expansion and deforestation, the 

increase in vegetation between 1986 and 2020 is an interesting finding. The area occupied by 

vegetation increased from 36% to 44%, becoming the most dominant LULC class in 2020. The 

increase in vegetation suggests that when population growth is accompanied by adopting 

sustainable land management practices, it can lead to better land and water conservation.  

Indeed, in the south of the Bafing watershed in Guinea (Fouta Djallon), the ecological 

intensification of rural activities has long been established and vegetation is not threatened. In 

the north of the Bafing watershed in Mali, several projects, such as the Bafing Faunal Reserve 

(Mali), the status of biosphere reserve (Mali), have been adopted to fight biodiversity losses 
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after the construction of the Manantali Dam. The modelling of the future LULC changes was 

entirely realized in the Land Change Modeller (LCM) with the Multilayer Perceptron and 

Markov Chain (MLP-MC) model based on five steps: change detection and analysis, 

determination of the explanatory variables, creation of transition potential maps,  prediction of 

changes, and model validation. LULC maps of the years 1986 and 2006 were employed to 

analyze the trend of change, to calculate transition potential maps and to predict the LULC map 

of 2020. For model validation, the LULC map 2020 was compared with the predicted LULC 

map 2020 with the validation indicators (ROC, kia, Klo, and kno). The results indicate that the 

LCM through the MLP-MC model has reasonably simulated the LULC map of 2020 and can 

be used to project future LULC (2050) in the Bafing watershed. In 2050, vegetation will cover 

49% of the study area, an increase of 3% compared to 2020. Settlement will be the second 

dominant LULC (with an increase of 1% compared to 2020). Bareground will be the third most 

dominant LULC class with 22%, representing a loss of 6%. Water and cultivated area will 

increase to 4.8% of the area. The Bafing watershed has seen a trend towards "more people, 

more trees". 

The third specific objective was to assess the impact of climate and LULC changes on the 

hydrology and the HPP of the existing Manantali dam (DS1), the Manantali, Koukoutamba dam 

system (DS2), and the Manantali, Koukoutamba and Boureya dam system (DS3). The 

assumption that climate change and LULC change are independent was taken into account in 

order to separate the respective contributions of these two factors. Their effects were calculated 

using a separation method that involves changing one factor at a time (either climate or LULC 

by keeping the other constant) (Fenta Mekonnen et al. 2018) and combining the two factors 

(climate and LULC). A set of pertinent performance indicators was used to compare future 

changes with the reference period. These metrics include reliability, spill, and probabilities of 

exceedance. The spill was considered in this instance as a failure related to the maximum 

capacity, which could negatively impact hydropower generation.  

The SWIM hydrological model was used to simulate the hydrological processes in the Bafing 

watershed, the inflows and dams management of the three dams. The SWIM hydrological 

model proved to be satisfactory in reproducing the flows with a NSE and KGE value of 0.8 and 

0.7, respectively, in the calibration (1979-1986) and the validation (1987-1993) period. 

Although the model tends to overestimate peak flows, it well replicates low flows. The SWIM 
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Dam module satisfactorily reproduces the dynamics of inflows, outflows, and the water level 

of the Manantali dam.  

At first, the impact of climate change on the hydrology and the HPP of the Manantali dam was 

analyzed for the near future (P1) and the far future (P2) compared to the reference period (P0) 

under ssp 126 and ssp 370. The results show that the inflow and the HPP of the Manantali 

follow the general trend of the projected precipitation. For the near future, an increase in the 

inflow of 6% will lead to an increase in HPP of 3% under ssp 126 or a reduction in the inflow 

of -1% will cause a loss of HPP of -1% under ssp 370. For the far future, a decrease in inflow 

of -4% and -8% will cause a decrease in HPP of -8% and -14% respectively under ssp 126, ssp 

370. Eta is expected to increase in the future over the Manantali dam, which is compatible with 

the predicted temperature. 

Then, the impact of LULC change on hydrology and the HPP of the Manantali dam from 1986 

to 2050 were evaluated. The results indicate that LULC change negatively impact the inflow 

and the HPP at the Manantali dam. Indeed, LULC change will lead to a decrease of -5% in the 

inflow and -5.7% in HPP between 1986 and 2050.  

After, the analysis of the combined impact of climate change and LULC change showed that 

although LULC change has a significant effect on the Manantali dam hydrology and HPP, it is 

smaller than climate change. Even though the LULC change (only) reduces the HPP of the 

Manantali dam by -5% in P1 under ssp126, the combined climate and LULC simulations still 

project an increase of 3.2% in the HPP of the Manantali dam. These results confirm the 

hypothesis of Albergel (1987)  and Bernadette Nnomo (2016) that for a Sudanian watershed 

such as the Bafing watershed, the decrease in flow is an effect of climate deterioration rather 

than LULC change. These findings support the hypothesis that the variation in flow in a 

Sudanian watershed such as the Bafing watershed is due to climate change rather than LULC 

change. 

After, the effect of the future dams (DS2, DS3) on the HPP of the Bafing watershed also occupy 

a central place in the analysis. The findings show that joint operation of the three dams (DS3) 

increases average annual HPP in the Bafing watershed from 820 GWh/y (Manantali) to 2207 

GWh/y (Manantali, Koukoutamba and Boureya) in P0.  In addition, future dams (Koukoutamba 

and Boureya) will reduce the risk of the water level in the Manantali dam reaching the lower 

threshold of the turbine, which will improve the reliability of the HPP. Future dams will also 

contribute to the reduction of spilled volumes by regulating the peak flow upstream of the 

Manantali dam; thus reducing the risk of flooding in the Senegal River valley. However, though 
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future dams will increase the HPP in the Bafing, they will negatively be affected by climate 

change and LULC change except in the near future under ssp 126.  

8.2 Limitations and expectations for future research 

 

The first limitation of the study was the use of W-era5 reanalysis data as reference data because 

of the lack of observed data of quality. Even if W-era5 reproduces very accurately the observed 

data, high quality observed data will give more precise results for the performance evaluation 

of the GCMs and the calibration and validation of the SWIM model.  

The second limitation of the study is the use of MLP-MC to simulate future changes in LULC 

in 2050 with the status quo assumption (BAU). LULC change prediction is based on two 

aspects: the amount of change, and the spatial distribution of change. The result of the 

simulation show that the MLP-MC model failed to represent accurately the spatial distribution 

of changes. Indeed, while the percentages of LULC between the reference map (2020) and the 

simulated map (2020)’ have a very high degree of concordance; the spatial distribution appears 

to be quite different. Therefore, a hybrid model that integrates spatial distribution of change 

such as Multi-Layer Perceptron Markov Chain Cellular Automata (MLP-MC-CA) and Logistic 

Regression Markov Model Cellular Automata (LR-MC-CA) should be considered in future 

research. These models have shown improvements in prediction and enabled a more precise 

simulation of LULC (Gaur et al., 2020; Sankarrao et al., 2021; Girma et al., 2022) 

The third limitation of the study is that it did not consider stakeholder participation in the LULC 

change modelling methods. Stakeholder knowledge of LULC change drivers, reconstruction of 

timelines of significant past events, and perspective on potential future trajectories of land-use 

change are crucial to achieve comprehensive results in a participatory manner and complement 

model results (Hewitt et al.,2014).   

The fourth limitation of the study is the non-integration of other Manantali dam objectives into 

the simulation and analysis. Actually, the Manantali dam is a multi-purpose hydropower dam 

designed and operated to provide services such as generating approximately 876 GWh of 

electricity per year; mitigation of floods that are too large to prevent their devastating effects; 

low-flow support for navigation and irrigated agriculture in the valley and for the supply of 

drinking water; flood support ensuring sufficient annual flooding in the valley for traditional 

agriculture practices and ecosystem maintenance (Bader and Albergel., 2015). Some of these 

objectives are contradictory, making the sustainable management of the Manantali dam 
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problematic. According to the work of Bader et al. (2003), flood support dedicated to ecological 

flow can, for instance, lead to a loss of energy production of up to an average of 14% in a dry 

year. The two objectives are proving to be very competitive in the context of low water, in the 

Senegal River Basin (Bruckmann, 2016). These conflicts make sustainable management 

problematic. Therefore, further study could focus on the impact of LULC change and climate 

change on Manantali dam and the system “Manantali dam, koukoutama and Boureya (DS3)”, 

taking into account the other objectives of the Manantali dam.  

The fourth limitation of the study is the used of the FAO soil database, which is not very precise 

for each watershed. it is essential for decision makers to build up soil type databases to improve 

the quality of hydrological modelling. 

As a perspective, additional information on the loss of hydropower potential to other uses such 

as irrigation, flood support for flood recession agriculture and related ecosystem services will 

be of paramount importance to enable an integrated management strategy for hydropower 

schemes in line with the Sustainable Development Goals (SDGs), in particular zero hunger (2), 

clean water and sanitation (6), clean and affordable energy (7), aquatic life (14). The objective 

will be to propose a decision support system for the optimal management of the water resource 

to allow decision-makers to have a wide range of choices on the actions to take. The approach 

could eventually be based on the "Water-Energy-food" Nexus taking into account climate 

change and LULC change. 

Considering these limitations and perspective, we hope that future research can fill the gaps. 
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Abstract :  

Located between Mali, Senegal, Mauritania and Guinea, the Senegal River Basin (SRB) is a strategic region for the socio-economic 
development of these countries. The Senegal River Basin is divided into three main parts: The upper basin, the valley and the delta. The Bafing 
watershed is the main tributary of the Senegal River and is located in the upper Senegal River Basin. The management of the Bafing watershed 
in time and space is possible thanks to the Manantali hydropower dam. The Manantali dam aims to meet the growing water, energy and 
agriculture need of the member states (Senegal, Mali, Guinea, Mauritania). The organization for the development of the Senegal River (OMVS) 
plans to build new hydropower dams (Koukoutamba, Boureya) upstream of the Manantali dam to increase hydropower potential in the Bafing 
watershed.  
In the future, water availability and hydropower generation are expected to be profoundly impacted, mainly due to the change in river flow 
caused by population growth, climate change, and Land use/land cover change. In the coming decades, climate change and changes in land use 
and land cover will further increase the constraints on the already scarce water resources in West Africa. Despite the amount of documentation 
and numerous projects on the Bafing watershed, there are not yet studies that have addressed the hydrological and hydropower potential (HPP) 
response considering the combined impact of future climate change, the land use/land cover (LULC) change and the future development of 
planned dams in the Bafing watershed. Therefore, this study aims to fill this gap by investigating the future impacts of climate change, land 
use, land cover change, and altered water resource management on the water availability and hydropower potential (HPP) in the Bafing 
watershed.  
Firstly, two precipitation products (reanalysis (W-era5) and satellite (CHIRPS)) were compared to the observed precipitation of Bafing Makana 
station due to insufficient data caused by numerous gaps in the historical time series. This exercise was done to select the best precipitation 
product to reproduce the observed precipitation. The results showed that W-era5 represents the observed data more accurately than CHIRPS. 
After, ten downscaled and bias-adjusted Global Climate Models from ISIMIP 3b were investigated to determine whether the models 
satisfactorily replicate the reference climate (temperature and precipitation of W-era5) of the Bafing watershed. The results indicated that the 
tens GCMs could successfully replicate the reference climate. Hence, the median of the 10 GCMs (MME) was used to analyze the future trend 
in the near future (P1:2035-2065) and the far future (P2:2065-205) compared to the reference period (P0:1984-2014) under ssp 126 and ssp 
370. The results indicated that, according to the median (MME), a rise in temperature by 1.4°C and 2.0°C under ssp126 and ssp370 is predicted 
in the near future. In the far future, the difference between both climate scenarios is much larger and spans from 1.6°C to 3.7°C. Projected 
precipitation is uncertain in the future. Indeed, precipitation is predicted to increase under ssp126 or decrease below ssp 370 in the near future. 
In the far future, precipitation is expected to decrease under both scenarios.  
Secondly, the past and future LULC change was analyzed between 1986 to 2020 and 2020 to 2050. Landsat images and the random forest 
classification method were used to map LULC of 1986, 2006 and 2020. Future LULC map in 2050 were simulated under business-as-usual 
assumptions with the Multi-Layer Perceptron and Markov Chain method embedded in the Land Change Modeller software. The LULC change 
was analyzing using the post classification change detection technique, a pixel-based method. The results showed that between 1986 to 2020, 
vegetation, settlement, cultivated area and water increased, while the bareground decreased. Between 2020-2050, the results indicated that 
vegetation, settlement, cultivated area, and water are projected to increase in Bafing. The Bafing watershed has seen a trend towards "more 
people, more trees". 
Thirdly, an eco-hydrological water management model, the Soil and Water Integrated Model (SWIM), was set up and used to generate river 
discharge and simulate existing and future dams. SWIM model was driven by ten downscaled and bias adjusted GCMs under ssp 126 and ssp 
370 and land use/land cover maps (1986, 2020, 2050). The analysis was carried out using a separation method that includes combining the two 
components (climate and LULC) and adjusting one factor at a time while holding the other constant. The result indicated that SWIM 
satisfactorily reproduces the observed flow with statistical performance measures (NSE, KGE) between 0.7 and 0.8. Reservoir module also 
satisfactory reproduce the inflow, outflow, and water level of the Manantali dam. Under the impact of climate change, the result of the SWIM 
simulation indicated that the inflow and hydropower potential of the Manantali dam will decrease except in the near future under ssp 126, 
following the general trend of precipitation in the future. Under the impact of LULC change, the inflow and hydropower potential (HPP) of 
the Manantali dam will decrease by -5% and -5.7 respectively due to the conversion of bareground (with high runoff coefficients) to vegetation 
and cultivated area (low runoff coefficients) during the period 1986-2050. Under the effects of climate change and LULC change, the result of 
the SWIM simulation pointed out that LULC change has less impact on the inflow and hydropower potential of the Manantali dam than climate 
change.  
Investment in future dams has advantages, such as increased water storage, greater hydropower potential and improved flood protection. 
However, future dams will be negatively affected by climate change in the future (except in the near future under ssp 126), and their operation 
will lead to a loss in the hydropower potential of the Manantali dam. Therefore, the implementation of adaptation techniques to mitigate the 
effects of the environmental and social impacts of these dams, as well as the impact of climate change and LULC change. Adaptation techniques 
can be an optimization program or adopting a new common energy policy promoting an energy mix that prioritizes renewable energies, namely 
solar and wind. The results of this study provide relevant information to the OMVS for the management of the Bafing watershed.  
 

keyword: Climate change, Land use land cover change, Hydropower generation, water resource management, 
Bafing watershed, Senegal River Basin 
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