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Abstract 

Estimating climate change impacts on water resources in West Africa has been challenged by 

hydrological data scarcity and inconsistencies in the available climate projections. In this thesis, 

an integrated approach involving land surface modelling, data assimilation and multi-model 

ensemble of the most recent regional climate model output is used to simulate the hydroclimatic 

impacts of climate change over Burkina Faso. To this end, high-resolution simulations from the 

CO2-responsive versions of the Interactions between Soil, Biosphere, and Atmosphere (ISBA), 

the global Land Data Assimilation System (LDAS-Monde) and a multi-model ensemble based 

on the most recent version of the Regional Climate Model (RegCM4) under two Representative 

Concentration Pathways (RCP4.5 and RCP8.5) are used. ISBA estimates are assessed through 

its forcings (ERA5 and ERA-Interim reanalyses) for precipitation and solar radiation variables. 

First, it is shown that both reanalyses present a good performance in representing precipitation 

variability and incoming solar radiation (with better score for ERA5). This highlights a good 

calibration and the potential of ISBA to provide good quality estimates of land surface estimates 

such as Leaf Area Index (LAI) and Surface Soil Moisture (SSM). Then, within LDAS-Monde, 

SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated 

with a simplified extended Kalman filter (SEKF) using ISBA over a long period (2001-2018). 

Results of four experiments are then compared: Open-loop simulation (i.e., model run with no 

assimilation) and analysis (i.e., joint assimilation of SSM and LAI) both forced by either ERA5 

or ERA-Interim. After jointly assimilating SSM and LAI, sensitivity study of the model to the 

observations permits to notice that the assimilation is able to impact soil moisture in the first 

top soil layers (mainly up the first 20 cm), but also in deeper soil layers (from 20 cm to 60 cm 

and below), as reflected by the structure of the SEKF Jacobians. The benefit of using ERA5 

reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is 

able to improve the simulation of both SSM and LAI: the analyses add skills to both 

configurations, indicating the good behaviour of LDAS-Monde. For LAI in particular, the 

southern region of Burkina Faso (dominated by a Sudan-Guinean climate) highlights a strong 

impact of the assimilation compared to the other two sub-regions of Burkina Faso (dominated 

by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences 

between the model and the observations are the largest, prior to any assimilation. These 

differences are linked to the model failing to represent the behaviour of some specific vegetation 

species, which are known to produce leaves before the first rains of the season. The LDAS-

Monde analysis is very efficient at compensating for this model weakness. 
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 Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model 

(GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-

induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in 

the evaluation process, again demonstrating improvements in the representation of 

evapotranspiration and gross primary production from assimilation. Finally, the impact of 

anthropogenic climate change in the hydroclimatology of Burkina Faso for the middle (2041– 

2060) and late (2080–2099) 21st century has been investigated with regard to the historical 

period (2001-2018). The results indicate that an increased warming, leading to substantial 

increase of atmospheric water demand, is projected over all Burkina Faso areas. In addition, 

mean precipitation unveils contrasting changes with wetter conditions (for all three climatic 

zones) by the middle of the century and drier conditions during the late twenty-first century 

(mostly for the Sahelian zone). Such changes cause more/less evapotranspiration and soil 

moisture respectively during the two future periods. Furthermore, surface runoff shows a 

tendency to increase and decrease along with short spatial gradients regardless whether the 

region receives more or less precipitation. Finally, it is found that while dry and semi-arid 

conditions develop in the RCP4.5 scenario, generalized arid conditions prevail over the whole 

Burkina Faso for RCP8.5. It is thus evident that these future climate conditions substantially 

threaten water resources availability for the country as well as agricultural activities. Therefore, 

strong strategedies are needed to help design response options to cope with the challenges posed 

by the projected climate change for the country. 

 

Keywords: Land surface modelling, data assimilation, evapotranspiration; leaf area index, 

runoff, surface soil moisture. 
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Synthèse de la thèse 

Résumé 

La présente thèse vise à évaluer les conditions hydroclimatiques historiques et futures 

du Burkina Faso en utilisant une approche intégrée impliquant la modélisation des variables 

d’état de surface, l'assimilation de données et les changements climatiques. Pour cela, des 

simulations à haute résolution (0.25°) de la version sensible au CO2 du modèle ISBA 

(Interaction Sol-Biosphère-Atmosphère), du système global d'assimilation de données de 

surfaces terrestres (LDAS-Monde) et d'un ensemble multi-modèle basé sur la version la plus 

récente du modèle climatique régional (RegCM4) considérant deux profils représentatifs 

d’évolution de concentration (RCP4.5 et RCP8.5) sont utilisées. La validation du modèle ISBA 

se fait indirectement en évaluant la qualité de ses forçages atmosphériques (les ré-analyses 

ERA5 et ERA-Interim) pour la pluie et le rayonnement solaire pour la période 2010-2016. Tout 

d'abord, il est démontré que les deux ré-analyses présentent une bonne performance dans la 

représentation de la variabilité des précipitations et du rayonnement solaire entrant (avec un 

meilleur score pour ERA5). Cela met en évidence un bon potentiel de ISBA à fournir de 

raisonnables estimations des variables d’état de surface telles que l'indice de surface foliaire 

(LAI, en anglais) et l'humidité superficielle du sol (SSM, en anglais). Ensuite, dans le système 

d’assimilation LDAS-Monde, les observations satellitaires de SSM et LAI du Copernicus 

Global Land Service (CGLS) sont assimilées à l’aide d’un Filtre de Kalman Simplifié Etendu 

(SEKF, en anglais) en utilisant ISBA sur une longue période (2001-2018). Les résultats de 

quatre expériences sont ensuite comparés : deux simulations « en boucle-ouverte » (c'est-à-dire 

modèles sans assimilation) et deux analyses (c'est-à-dire assimilation conjointe de SSM et de 

LAI dans le modèle) respectivement forcées par les ré-analyses atmosphériques ERA5 et ERA-

Interim. Après l'assimilation conjointe de SSM et de LAI, l'étude de la sensibilité du modèle 

aux observations permet de constater que l'assimilation peut avoir un impact positif sur 

l'humidité du sol dans les premières couches supérieures (principalement jusqu'aux 20 premiers 

cm), mais aussi dans les couches plus profondes (de 20 cm à 60 cm et en dessous), comme le 

reflète la structure des Jacobiens du SEKF. La valeur ajoutée de la ré-analyse ERA5 par rapport 

à ERA-Interim lorsqu'elle est utilisée dans LDAS-Monde est mise en évidence. L'assimilation 

est capable d'améliorer la simulation de SSM et de LAI : les analyses ajoutent de la compétence 

aux deux configurations, indiquant un comportement adéquat de LDAS-Monde. Pour le LAI 

en particulier, la région Sud du Burkina Faso (dominée par un climat soudano-guinéen) met en 

évidence un fort impact de l'assimilation par rapport aux deux autres sous-régions du Burkina 
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Faso (dominées par les climats sahélien et soudano-sahélien). Dans la partie Sud, les différences 

entre le modèle et les observations sont les plus importantes, ceci avant toute assimilation. Ces 

différences sont liées au fait que le modèle ne représente pas le comportement de certaines 

espèces végétales spécifiques, qui sont connues par leur capacité à produire du feuillage avant 

les premières pluies de la saison. L'analyse de LDAS-Monde est très efficace pour compenser 

cette faiblesse observée dans le comportement du modèle de surface ISBA. Des estimations 

d'évapotranspiration provenant du projet GLEAM (Global Land Evaporation Amsterdam 

Model) ainsi que des produits de carbone assimilé du projet FLUXCOM et la fluorescence 

induite par le soleil de l'expérience GOME-2 (Global Ozone Monitoring Experiment) sont 

utilisées dans le processus d'évaluation, démontrant encore une fois des améliorations dans la 

représentation de l'évapotranspiration et de la production primaire brute après assimilation. 

Enfin, les impacts du changement climatique anthropique sur l'hydroclimatologie du Burkina 

Faso pour la moitié (2041-2060) et la fin (2080-2099) du 21e siècle ont été analysés par rapport 

à la période historique (2001-2018). Les résultats indiquent qu'un réchauffement élevé, 

entraînant une augmentation substantielle de la demande en eau atmosphérique, est prévu sur 

l'ensemble du Burkina Faso. En outre, les précipitations moyennes révèlent des changements 

contrastés avec des conditions plus humides au milieu du siècle (pour toutes les zones 

climatiques) et des conditions plus sèches (plus particulieremnt dans la zone sahélienne) à la 

fin du 21e siècle. De tels changements entraînent une évapotranspiration et une humidité du sol 

plus ou moins importantes au cours des deux périodes futures. En outre, le ruissellement de 

surface aurait, en partie, tendance à augmenter et à diminuer avec un imporatant gradient 

spatial, tenant compte de la quantité de pluie reçue par le pays. Enfin, on constate que si des 

conditions sèches et semi-arides se développent dans le scénario RCP4.5, des conditions arides 

généralisées prévalent sur l'ensemble du Burkina Faso pour le RCP8.5. Il est donc évident que 

ces conditions climatiques futures menaceront considérablement la disponibilité des ressources 

en eau pour le pays ainsi que les activités agricoles. Par conséquent, des stratégies adaptées sont 

nécessaires pour aider à concevoir des options de réponse afin de faire face aux défis posés par 

le changement climatique prévu pour le pays.  

Mots clés : Modélisation des surfaces terrestres, assimilation de données, évapotranspiration, 

indice de surface foliaire, ruissellement, humidité de surface.                                                                                     

 Introduction 

Les variables d'état de surface permettent de caractériser la dynamique des surfaces 

continentales et de l'atmosphère, jouant ainsi un rôle clé dans notre système hydroclimatique. 
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L'initialisation des modèles de variables d’état de surface (LSM, en anglais pour Land Surface 

Model) pour une représentation optimale des variables d’états de surface est donc pertinente 

pour le suivi des variables de surface terrestre et bien sur, leur prévision. Dans un contexte de 

changement climatique et d’augmentation probable dans le futur de la fréquence et de l’intensité 

des événements extrêmes, des sécheresses agricoles en particulier, il est nécessaire de mieux 

représenter la réponse des variables hydroclimatiques. Le suivi de l’impact des événements 

extrêmes sur les surfaces terrestres fait intervenir de nombreuses variables du système sol-

plante, comme le contenu en eau des sols et l’indice de surface foliaire (LAI) de la végétation. 

Ces variables peuvent être suivies de deux façons : (1) en utilisant le volume d’observations 

sans précédent fourni par la flotte de satellites d’observation de la Terre, et (2) en utilisant des 

modèles de surfaces terrestres. Il existe une troisième solution qui consiste à combiner 

l’ensemble de l’information disponible en intégrant les observations satellitaires dans les 

modèles. Ce processus s’appelle l’assimilation de données. Elle produit une analyse des 

variables terrestres qui constitue la meilleure estimation possible car les informations de départ 

sont pondérées de façon à prendre en compte les incertitudes.  

Outre le contexte de la surveillance climatique et hydrologique, l'amélioration de la 

prévision des paramètres de surface terrestre - en particulier dans les zones pauvres en données 

comme le Sahel en Afrique - est également pertinente pour toute une série d'autres problèmes 

dont la solution dépend d'informations précises et opportunes sur le bilan hydrique et 

énergétique de la surface terrestre. Pour ces raisons, il a été largement proposé dans cette thèse 

une stratégie effective pour mieux représenter les paramètres clés pour le suivi des ressources 

en eau, comme l’humidité du sol. Enfin, il sera fourni des projections robustes de paramètres 

clés permettant d’analyser la disponibilité future des ressources en eau pour le Burkina Faso. 

Les objectifs spécifiques de cette thèse sont : (i) évaluer la qualité des simulations de ISBA à 

travers la performance des ré-analyses ERA5 et ERA-Interim ; (ii) évaluer la capacité de LDAS-

Monde à fournir une ré-analyse à long terme des variables hydroclimatiques à travers 

l’assimilation conjointe d’observations de LAI et d’humidité superficielle du sol ; et enfin (iii) 

évaluer les changements potentiels sur les variables hydroclimatiques telles que 

l'évapotranspiration, le ruissellement de surface, et l'humidité du sol.      

 Contexte général et revue de littérature 

Ce chapitre a donné des informations détaillées basées sur la littérature. Ces 

informations sont fondées sur des études antérieures et sont pertinentes pour les objectifs mis 

en évidence dans le chapitre d'introduction. Il a également été noté un manque de connaissances 
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dans le contexte de la recherche sur l'assimilation des données dans les modèles de surface dans 

un cadre plus large - que le cadre de modélisation réalisé ici contribue à étoffer. La littérature 

suggère également la nécessité de progresser vers l'utilisation de schémas d'assimilation de 

données plus optimaux tels que le KF (filtre de Kalman), afin de mieux gérer les différents 

produits de données de surface terrestre de plus en plus disponibles. Le SEKF (filtre de Kalman 

étendu simplifié) est donc un choix approprié à utiliser pour l'assimilation séquentielle de 

l'humidité du sol et des produits de végétation dans cette thèse. De nombreuses études 

d'assimilation publiées ont examiné l'assimilation de données sur l'humidité du sol, la 

température du sol ou la végétation dans une série d'études. Inversement, les recherches sur 

l'assimilation des données de SSM et de LAI sont limitées dans la littérature, plus 

particulèrement, le potentiel de l'utilisation conjointe de ces données pour améliorer les 

prévisions de SSM et de LAI ainsi que les flux tels que l'évapotranspiration. C'est pourquoi 

cette thèse a cherché à produire une ré-analyse de qualité de paramètres d’état de surface pour 

enfin, faire un suivi des impacts des changements climatiques futurs sur l’hydroclimatologie du 

pays. 

 Présentation de la zone d’étude  

La zone d’étude est le Burkina Faso (Burkina Faso) et couvre environ 274 000 km2 pour 

une population estimée à 20 millions d’habitants (largement plus concentre au Sud). Le pays 

est situé entre le désert du Sahara et le Golfe de Guinée, au sud du fleuve Niger, entre les 

latitudes 9° et 15°N, et les longitudes 6°W et 3°E. Le Burkina Faso possède des plans d'eau tels 

que des lacs et des bassins fluviaux sur l'ensemble de son territoire. Toutefois, le plus grand 

réseau d'eau se trouve dans le sud du pays, qui présente trois principaux bassins fluviaux : la 

Volta, la Comoé et le Niger. L'altitude moyenne du pays est de 400 m et la différence entre le 

relief le plus élevé et le plus bas ne dépasse pas 600 m. Ainsi, le Burkina Faso est considéré 

comme un pays relativement plat. En termes de climat, le Burkina Faso est principalement 

marqué par un climat tropical avec deux saisons. Pendant la saison des pluies, le pays reçoit 

entre 600 et 900 mm de précipitations ; tandis que la saison sèche est caractérisée par un vent 

chaud et sec en provenance du Sahara caractérisant ainsi trois zones climatiques : climat 

sahélien (SH), climat Soudano-Sahélien (SS) et climat Soudano-Guinéen (SG).  

 Matériels et méthodes 

Ce chapitre a présenté les différents jeux de données et modèles utilisés dans cette thèse. 

Ce sont entre autre les données in-situ de pluie et radiation solaire de l’ANAM (Agence 

Nationale de la Météorologie) du Burkina Faso, les données de télédétection d’indice de surface 

foliaire (LAI) et d'humidité du sol (SSM) issues du CGLS (Copernicus Global Land Service, 
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en anglais), les ré-analyses atmosphériques ERA-Interim et ERA5 du centre européen pour les 

prévisions météorologiques à moyen terme (ECMWF, anglais), le modèle de surface ISBA ainsi 

que le système d'assimilation de données terrestres LDAS-Monde mis en place pour améliorer 

la représentation des variables d’état de surface. Il s’y ajoute la dernière version du modèle 

régional climatique RegCM4 développée par le centre international de physique théorique 

(ICTP, en anglais) utilisée pour l’analyse des projections hydroclimatiques futures. Le filtre de 

Kalman Etendu Simplifié (SEKF) a été utilisé comme méthode dans le cadre des expériences 

d’assimilation afin d’intégrer les données d’observation (LAI et SSM) dans le modèle ISBA 

afin de permettre à LDAS-Monde de produire des ré-analyses de surface telles que l’humidité 

du sol. Ces sorties du système LDAS-Monde sont soumises à des stratégies d'évaluation pour 

apprécier leur qualité et performance. Ces stratégies mettent en jeu des scores statistiques tels 

que la corrélation (R), l’erreur quadratique moyen ou RMSD ainsi que le RMSD non biaisé 

(ubRMSD), le biais et la différence des écart-types (SDD). Afin d'aborder les questions de 

disponibilité future de l'eau pour le Burkina Faso dans le cadre du changement climatique, nous 

avons étudié dans quelle mesure le changement climatique anthropique modifie 

l'hydroclimatologie du pays. Pour ce faire, la méthode du changement de signal appelée aussi 

Méthode du Delta (futur - présent) a été utilisée. Plus précisément, il a examiné comment les 

différents forçages RCPs (RCP4.5 & RCP8.5) impactent les températures, les précipitations, 

l'évapotranspiration, l’humidité du sol, le ruissellement de surface dans un futur proche et à la 

fin du 21e siècle. Enfin, l'aridité du Burkina Faso a été étudiée à travers une approche 

multivariée, utilisant la classification révisée de l'humidité de Thornthwaite combinée à l’indice 

développé par Wilmot et Feddema pour la période de référence (2001-2018), le proche avenir 

(2041-2060) et la fin du 21e siècle (2080-2099), ainsi que pour la RCP4.5 et la RCP8.5. 

 Résultats et discussions 

Les résultats de la thèse sont largement basés sur la modélisation des variables d’état de 

surface, l’assimilation de données et les changements climatiques.   

En premier lieu, cette étude s'est accentuée sur la validation des ré-analyses 

atmosphériques ERA5 et ERA-Interim à controller les sorties du modèle ISBA à l'aide de 

mesures in situ de pluie et de rayonnement solaire entrant (SWin). Cette approche représente 

une évaluation indirecte des simulations d’ISBA pour des variables comme le LAI et le SSM 

qui sont principalement conditionnées par la qualité des forçages atmosphériques comme la 

pluie et la radiation solaire. La qualité d'ERA5 par rapport à l'ancienne réanalyse ERA-Interim 

a été aussi évaluée en meme temps. Les valeurs médianes de R, ubRMSD, biais et RMSD pour 

la série chronologique (2001 à 2018) des précipitations mensuelles totales sont respectivement 
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de 0.82 ± 0.009, 52.02 ± 1.390 mm/mois, - 15.00 ± 3.270 mm/mois, et 56.15 ± 3.600 mm/mois 

pour ERA5, et 0.77 ± 0.010, 58.44 ± 1.420 mm/mois, - 19.85 ± 3.770 mm/mois, et 63.89 ± 

3.250 mm/mois pour ERA-Interim avec un intervalle de confiance estimé à 95 %. Ces résultats 

indiquent une meilleure performance avec la réanalyse ERA5 dans la représentation de la 

variabilité des précipitations comparée à ERA-Interim. De plus, ERA5 est plus performant 

qu’ERA-Interim pour 84% des stations de mesure des précipitations pour les valeurs de R, 89% 

pour les valeurs de ubRMSD, 83% pour les valeurs de biais et 86% pour les valeurs de RMSD. 

Les mêmes conclusions ont été illustrées par les cartes de la Figure 1, où les symboles en forme 

de triangle (cercle) indiquent les stations où l'ERA5 est plus performant (moins performant) 

que l'ERA-Interim en termes de R (Figure 1a) et de ubRMSD (Figure 1b). 

 

Figure 1 : Cartes de corrélation (R) sur les séries chronologiques de précipitations 

(a) et de ubRMSD (mm/mois) sur les séries chronologiques de précipitations (b) entre les 

mesures in situ des précipitations et les deux reanalyses ERA-Interim et ERA5. 

 

Des améliorations substantielles d’ERA5 par rapport à ERA-interim pour la variable SWin (sur 

2017) ont aussi été obtenues en utilisant les mêmes métriques statistiques que pour les 

précipitations. Median R, ubRMSD, bias, and RMSD values along with their 95% confidence 

interval are 0.59 ± 0.070, 36.23 ± 6.480 W/ m2, 19.40 ± 32.430 W/m2, and 42.24 ± 21.760 

W/m2 for ERA5, and 0.46 ± 0.150, 41.03 ± 4.220 W/m2, 28.12 ± 29.800 W/m2, and 50.72 ± 

18.630 W/m2 for ERA-Interim. ERA5 et ERA-Interim montrent donc une bonne abilité pour 

forcer le modèle de surface ISBA afin de produire des simulations adéquates de variables d’état 

de surface.  

 Dans une seconde partie, des expériences d’assimilation ont été menées avec le système 

LDAS-Monde intégrant les données d’observations LAI et de SSM dans le modèle ISBA. Les 

principaux résultats ont démontré une bonne qualité des ré-analyses LDAS-Monde pour 

surveiller les conditions de surface continentale à différentes échelles de temps (mensuelle, 
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annuelle, saisonnière, etc.) sur le Burkina Faso avec une gamme d'incertitudes adéquates. 

Ensuite, une évaluation comparative des performances de LDAS-Monde a été réalisée en 

utilisant les deux ré-analyses atmosphériques précédents forçant le modèle ISBA. Les deux 

configurations conduisent dans un premier temps à de bonnes estimations, par exemple, sur la 

variable LAI avec un avantage utilisant ERA5 comme forçage du système (Figure 2). 

Néanmoins, la comparaison effectuée entre le modèle (sans assimilation) et le LAI observé a 

mis en évidence l'absence de processus dans la représentation de la phénologie de la végétation. 

Cependant, l’assimilation conjointe de LAI et SSM a permis de corriger ce manquement du 

modèle ISBA par l’amélioration des corrélations et la réduction des RMSD avec LDAS-Monde 

(Figure 2). Concernant l'humidité de surface du sol, l'assimilation a permis d'améliorer sa 

représentation en utilisant soit ERA5, soit ERA-Interim. Cela a mis en évidence que 

l'assimilation ajoute de la “compétence” aux deux configurations et a prouvé le comportement 

sain du système LDAS-Monde. En outre, d'importantes améliorations dans la représentation 

des variables (LAI, SSM, l’évapotranspiration et la production primaire brute) ont été obtenues 

avec de meilleurs scores pour l'analyse que pour le modèle équivalent (sans assimilation). En 

particulier, l'analyse du LAI a très bien compensé les défauts du modèle ISBA, comme 

l'incapacité à capturer l'apparition de la végétation avant les premières pluies pour certaines 

espèces de plantes.  

                            

Figure 2 : (a) SDD (b) biais (c) RMSD et (d) corrélation (R) saisonniers entre le LAI provenant 

soit de la configuration LDAS-ERA5 (lignes continues) ou de LDAS-ERAI (lignes pointillées) 

et le LAI observé entre janvier 2001 et juin 2018. 
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Enfin, l'impact du changement climatique anthropique sur l'hydroclimatologie du 

Burkina Faso a été analysé utilisant un ensemble multi-modèle basé sur des simulations 

climatiques régionales du modèle RegCM4 considèrant les scénarios RCP4.5 et RCP8.5. Les 

principaux résultats montrent une augmentation généralisée du réchauffement sur tout le 

Burkina Faso (1 à 6.5 °C). Pour les précipitations, des changements contrastés ont été notés : 

des conditions plus humides (10 à 50 %) au milieu du siècle (2041-2060) et des conditions plus 

sèches (plus de 30 %) à la fin du 21e siècle (2080-2099). Ces modifcations projetées sur la 

température et les précipitations pourraient occasionner une augmentation (et une dimunition) 

de l’évapotranspiration et de l’humidité du sol plus ou moins importantes pour le milieu (et la 

fin) du siècle pour les deux scénarios considèrés. De plus, une tendance à la hausse (et à la 

baisse) du ruissellement de surface a été projetée avec un important gradient spatial, c’est à dire 

sur de très petites distances (Figure 3).  

 

Figure 3 : Évolution des écarts (par rapport à la période de référence) du 

ruissellement annuel moyen (en %) pour le futur proche (2041-2060, panneaux supérieurs) et 

le futur lointain (2080-2099, panneaux inférieurs) et pour la RCP4.5 (panneaux gauches) et 

la RCP8.5 (panneaux droits). 

  

Pour examiner comment ces changements combinés affecteront les conditions 

d'humidité du Burkina Faso, une approche multivariée a été utilisée, en l’occurence la 

classification révisée de l'humidité de Thornthwaite, pour dériver un indice d'aridité pour le 
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pays suivant Feddema (2005). L'indice d'aridité est présenté à la figure 4 pour l'historique, le 

proche avenir et la fin du 21e siècle, ainsi que pour la RCP4.5 et la RCP8.5. La période 

historique montre que Burkina Faso est essentiellement un pays semi-aride. Dans un avenir 

proche, cette semi-aridité est moins étendue pendant que certaines conditions sèches et, dans 

une moindre mesure, humides apparaissent dans les régions du sud. Cependant, pour la fin du 

21e siècle et pour les deux scénarios, les régions du centre et du nord du pays montrent des 

conditions arides (Figure 4). 

 

Figure 4 : Distribution de l'indice d'aridité pour l'historique (2001-2018, panneau 

supérieur), le futur proche (2041-2060, panneaux du milieu) et le futur lointain (2080-2099, 

panneaux inférieurs) et pour le RCP4.5 (panneaux de gauche) et le RCP8.5 (panneaux de 

droite). 

Conclusion 

Cette thèse a permis d’avoir une meilleure connaissance de la modélisation des variables 

d’état de surface et de l’assimilation de données au Burkina Faso. Elle a aussi contribué à fournir 

des informations sur les changements climatiques futurs qui pourraient affecter les ressources 

en eau du pays. L’étude de la comparaison des deux forçages atmosphériques a donné deux 

résultats clés : des améliorations importantes ont été constatées avec ERA5 par rapport à ERA-
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Intérim pour les précipitations ainsi que pour la variable du rayonnement solaire. Ensuite, une 

évaluation comparative des performances de LDAS-Monde a été réalisée en utilisant les deux 

réanalyses atmosphériques précédents forçant le modèle ISBA. Les deux configurations 

conduisent à un bon modèle de première estimation (avec un avantage utilisant ERA5 comme 

forçage du système LDAS-Monde). L’assimilation conjointe de LAI et SSM a aussi permis de 

mettre en évidence l'absence de processus physiques dans le modèle ISBA comme l’abscence 

de représentation de la phénologie de certains types de végétation propres au Sud du Burkina 

Faso. La représentation de l'humidité superficielle du sol a aussi été améliorée par l’assimilation 

ainsi que l’évapotranspiration.  

De par ces améliorations apportées par le système d’assimilation LDAS-Monde, ce 

dernier peut être utilisé pour résoudre certains problèmes liés aux ressources en eau, tels que la 

surveillance et la prévision du débit des cours d'eau, en mettant à jour les données d'entrée à 

l'échelle d’un bassin versant ou pour des zones plus larges. En outre, il a aussi été démontré que 

les changements climatiques affecteront considérablement l'hydroclimatologie du Burkina Faso 

dans un avenir proche, avec une diminution de la quantité d'eau de surface et une diminution 

généralisée de la disponibilité en eau à la fin du 21e siècle (diminution du ruissellement de 

surface et augmentation de l'évapotranspiration). De tels changements pourraient intensifier le 

stress des activités agricoles dans le pays à une période où les cultures auront besoin de plus 

d'eau en raison de l'augmentation des conditions de sécheresses (plus prononcée dans le Nord). 

Par conséquent, des mesures d'adaptation et d'atténuation fiables doivent être mises au point 

afin de faire face aux futurs changements hydroclimatiques dans le contexte du réchauffement 

climatique. 
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Chapter 1: General Introduction 

This chapter gives a general survey of the thesis. It outlines the research project from 

the beginning, the gaps to be filled, the objectives, the literature review on recent studies linked 

to the thesis as well as the expected results. 

1.1. General Context and problem statement 

Surface state variables charecterize the dynamics of the continental surface and 

atmosphere, thus playing a key role in our hydroclimatic system. Initializing Land Surface 

Models (LSMs) and Regional Climate Models (RCMs) for optimal land surface conditions 

representation is therefore relevant for land surface variables monitoring as well as climate 

change projections. The overall aim of this thesis is to contribute to existing knowledge on the 

best ways to optimise the representation of land surface parameters from LSMs using remotely 

sensed observations through a data assimilation framework and ultimately provide high-

resolution regional climate projections for water resources parameters over Burkina Faso. In 

addition to the climate and hydrological monitoring context, improving land surface parameters 

prediction—especially in data-problem areas such as Sub-Saharan Africa—is also relevant for 

a range of other problems that depend on accurate and timely land surface water and energy 

balance information for their solution. 

1.2. Literature review 

An accurate representation of land surface variables (LSVs), such as soil moisture or 

vegetation cover, is critical in climate science as well as environmental monitoring and 

prediction (e.g., in order to cope with drought, flood, or other extreme events). To that end, land 

surface models (LSMs) have been widely used to simulate and predict the Earth’s water storage 

and energy budgets over a broad range of time scales (Rodell et al. 2004; Schellekens et al. 

2017; Dirmeyer et al. 2006; Albergel et al. 2018). For instance, the AMMA (African Monsoon 

Multidisciplinary Analysis) Land Surface Model Intercomparison Project (ALMIP) used a set 

of LSMs forced in offline mode by a combination of satellite products and high quality in situ 

measurements in order to better apprehend LSVprocesses and their representation (Boone et al. 

2009). These LSMs are intended to reproduce LSVs, such as surface and root zone soil moisture 

(SSM and RZSM, respectively), vegetation biomass, and leaf area index (LAI), together with 

surface energy fluxes and streamflow simulations. 
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Over the last two decades, much progress has been made on the degree to which realistic 

land surface initialization contributes to the skill and performance of sub-seasonal land-related 

predictability as documented by Koster et al., (2011, 2009) in the Global Land-Atmosphere 

Coupling Experiment (GLACE). LSMs have subsequently benefited from the growing 

development of observational networks. Unfortunately, those are not evenly spaced and data 

sparse regions remain very difficult to model with accuracy. This is the case of West Africa 

(Boone et al., 2009; Diallo et al., 2017), where LSVs are of primary importance, as emphasized 

by many studies, (see, e.g. Charney, 1975; Taylor et al., 2011). 

In addition, data assimilation field of research has earned increasing consideration over 

the previous decades through largely by its potential for providing improved estimates of land 

surface states related to energy and water balance which can be used for both weather and 

hydrological forecasting and monitoring (Balsamo et al., 2007; Mahfouf, 2010; Reichle et al., 

2007; Van Den Hurk et al., 2002). These estimates are crucial for water resources management 

especially in data-sparse region like Africa. Furthermore, the increasing pace in the availability 

of different satellite-based observations that are linked to both land surface water and energy 

balances – including near-surface soil moisture from microwave sensors and vegetation 

products (Kerr, 2007; Owe et al., 2008) facilitates the growth consideration on land data 

assimilation. Certain type of these data have not been thoroughly investigated for LSM 

assimilation applications and, in particular, there are very few published examples assimilating 

LAI and SSM over Africa. In the context of West Africa, LSM applications is very relevant 

because of the low-availability of data in the region. LSMs are intended to reproduce Land 

Surface Variables (LSVs), such as surface and root zone soil moisture (SSM and RZSM, 

respectively), vegetation biomass, and leaf area index (LAI), together with surface energy 

fluxes and streamflow simulations. 

An important LSM is the ISBA (Interactions between Soil, Biosphere, and 

Atmosphere), which is part of the SURFEX modelling system (SURFace Externalisée, Massson 

et al. 2013). The CO2-responsive version of ISBA (Calvet et al., 1998; Masson et al., 2013; 

Noilhan and Planton, 1989) is used in this work for assimilating satellite-based observations. It 

models leaf-scale physiological processes and plant growth. Transfer of water and heat in the 

soil rely on a multilayer diffusion scheme. LSM data assimilation is seen as an integral part of 

hydrological system and monitoring, yet its application over Africa undergone very few studies. 

The ability to consistently improve soil moisture estimates and fluxes like 

evapotranspiration through the assimilation of key remote sensing observations will ultimately 
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lead to better water management strategies and optimal monitoring of key essential climate 

variables. Ultimately, examining the joint assimilation impacts of LAI and SSM would lead to 

an improved monitoring of key land parameters relevant for extreme events coping especially 

drought and floods as well as for hydroclimatic change monitoring. 

1.2.1 Importance of land-atmosphere feedback system 

The principal role of a LSM in hydroclimatic prediction systems is to evaluate latent 

and sensible heat flux feedbacks in the lower atmosphere. These fluxes depict transfer of energy 

into latent heat in the form of water vapour and sensible heat from the land surface to the 

atmosphere (Brutsaert, 2005). Consequent condensation of the evaporated/vegetation-

transpired water into cloud – leading to precipitation – is associated with a release of heat 

energy, which together with near surface heat conductance produce atmospheric convection, 

and thus controlling the thermodynamics of the atmosphere and hence our hydroclimatic system 

(Brutsaert, 2005; Pitman, 2003). 

As a fundamental water supply for evapotranspiration, soil moisture is a key variable in 

hydrological processes (runoff, evaporation from bare soil and transpiration from the vegetation 

cover), impacts plant growth and carbon fluxes (Dirmeyer et al., 1999; Entekhabi et al., 1999). 

Soil moisture is also important on its own for monitoring land surface conditions that trigger 

extreme events such as droughts, floods, and heatwaves. As a consequence, a significant 

amount of studies has been conducted to obtain soil moisture estimates. It was shown that, land 

surface modelling (e.g. Dirmeyer et al., 1999; Georgakakos and Carpenter, 2006) and remote 

sensing techniques (Kerr, 2007, 2007; Kerr et al., 2001; Njoku et al., 2003) have a great 

potential to provide reliable estimates of soil moisture. 

1.2.2 The land surface 

In general, the term ‘land surface’ employed here refers to the earth’s landscapes at the 

interface with the atmosphere, inclusive of vegetation and the unsaturated soil zone between 

the soil surface and the groundwater table. Water and energy transfers between the land surface 

and the atmosphere are connected, and the fundamentals of the science behind our current 

understanding of these continuous processes can be found in introductory texts on hydrology 

such as those of Beven, (2012) and Brutsaert, (2005). 
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1.2.2.1 The water balance 

Most of the natural water supply to the land surface comes from precipitation in the 

form of rainfall. Rainfall either directly reaches the soil surface or is intercepted by vegetation 

cover from where it can evaporate or drip through to the soil surface. At the soil surface it either 

evaporates, infiltrates into the soil or becomes gravity-driven surface runoff which flows into 

topographic depressions or waterways. For rainfall to become surface runoff there needs to be 

a sufficient surface gradient and the rate of rainfall needs to exceed the rate of infiltration (which 

typically decreases with increasing volumetric soil moisture content i.e. θ), and if the soil is 

saturated (maximum θ) there is no infiltration and practically all rainfall becomes runoff 

(Beven, 2012). Therefore, θ is a very important state in the overall water balance given its effect 

on different hydrologic processes such as vegetation and moisture parameters. 

θ is defined as in the same notation from (Brutsaert, 2005), 

 

𝜃 = lim
𝑉𝐻2𝑂→𝜃𝑠𝑎𝑡

(
𝑉𝐻2𝑂

Δ𝜆
) (Equation 1.1) 

 

is the total volume of water (𝑉𝐻2𝑂) contained in the pore space of a given bulk soil 

sample, per total volume of that sample Δ𝜆. The maximum possible 𝜃 (being for saturated soil: 

𝜃𝑠𝑎𝑡) is equivalent to the soil porosity, or the volume of pore space between solid particles (with 

volume  solids 𝑉𝑠𝑜𝑙𝑖𝑑𝑠) where 

 

                                                                  𝜃𝑠𝑎𝑡 = 1 − (
𝑉𝑠𝑜𝑙𝑖𝑑𝑠

Δλ
)                              (Equation 1.2) 

 

Based on soil type, pore space varies due to differing proportions of different sized soil 

particles (i.e. sand, clay and silt) and it is a pathway for infiltrated water to percolate through. 

The rate of infiltration is dependent on the soil hydraulic conductivity (K), potential gradient 

(ψ) and rainfall rate. For ψ, the holding force between water and the soil matrix (e.g. capillarity) 

is the dominant factor, with the terms pressure head, matric potential or soil suction commonly 

used for it. As soils drain post saturation, a balance between gravity and the capillary forces in 

the pores is eventually reached, and the term for θ when this occurs is the field capacity (θFC). 

Wilting point (θWilt) refers to a lower limit of θ beyond which plants can no longer extract water 

and they wilt. The range of θ between θFC and θwilt defines the available water capacity, which 

is generally accepted as an approximation of the range within which water is available for 
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extraction by plant roots (McKenzie et al., 2000), and is therefore important with regard to 

Evapotranspiration (ET). 

 

Richards’ equation (Richards, 1931) which is a well-established is used for vertical water flux 

through pore space of unsaturated soils, as a function of key soil properties: 

 

                                                     
𝜕𝜃

𝜕𝑡
= −

𝜕

𝜕𝑧
(𝐾(𝜃) + 𝐷(𝜃)

𝜕𝜃

𝜕𝑧
)                             (Equation 1.3) 

 

The term z represents the vertical distance below the land surface while D(θ) is the soil 

moisture diffusivity where, 

  

                                                        𝐷(𝜃) = −𝐾(𝜃)
𝜕Ψ(𝜃)

𝜕𝜃
                                     (Equation 1.4) 

 

Solving Equation (2.3) therefore relies on relationships between θ, ψ and K such as 

that of Brooks and Corey, (1964), with       

  

                     
𝜃−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
= (

Ψ𝑎𝑒𝑝

Ψ
)𝑏                                (Equation 1.5) 

and, 

 

                                                                 
𝐾

𝐾𝑠
= (

𝜃−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
)3+2𝑏                              (Equation 1.6) 

 

In Equation 1.5, ψaep represents air entry potential (also referred to as the suction at 

saturation) and Ks in Equation 1.6 is the hydraulic conductivity at saturation, while θres is the 

residual or air-dry soil moisture content (for ψ approaching infinity). The term b is a non-

dimensional constant, sometimes called the pore size index (Beven, 2012) or Campbell b 

parameter (Williams et al., 1992) in relation to the work of (Campbell, 1974) where the 

following was used: 

                                                          Ψ = Ψ𝑎𝑒𝑝(
𝜃

𝜃𝑠𝑎𝑡
)−𝑏                                        (Equation 1.7) 

 

Equation 1.7, in addition to: 



 

6 

 

 

                   𝐾 = 𝐾𝑠(
𝜃

𝜃𝑠𝑎𝑡
)3+2𝑏                                  (Equation 1.8) 

 

are the relationships of Clapp and Hornberger, (1978) for solving Richards’ equation. They are 

a slight variation on the Brooks and Corey, (1964) relationships (Equation 1.5) and Equation 

1.6, with the difference being that θres is made redundant for a smoother parabolic function 

relating the full range of values for θ, ψ and K. The van Genucthen model (van Genuchten, 

1980) is another representation of soil-water retention that is widely referenced in the literature, 

and is expressed as:  

     𝜃 = 𝜃𝑟𝑒𝑠 +
𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠

[1+(𝛼Ψ)𝑛]1−1 𝑛⁄                                           (Equation 1.9) 

 

In Equation 1.9, the parameters α and n relate to ψaep and pore size distribution 

respectively. 

  

The heterogeneity of the land surface as shown previously includes variation in soil type 

and therefore some of the key properties such as θsat, K, ψ, θFC and θWilt can vary both laterally 

and with depth down to sub 1 metre scale. This can contribute to high spatial variability of θ, 

which in combination with varying vegetation type and cover, and associated plant water use, 

may also contribute to the spatial variability of heat fluxes (Kalma et al., 2008). On the angle 

of spatial variability, these quantities add to the challenge of estimating them over large spatial 

regions and over long time periods, especially in data-sparse region. 

1.2.2.2 The energy balance 

A schematic description of the major land surface energy balance components discussed 

here is presented in Figure 2.1. Surface albedo is impacted by land cover and represents the 

fraction of total incoming shortwave (solar) radiation that is reflected away from it, while the 

remaining fraction is absorbed. Some generic albedo values given by Brutsaert (2005) for 

different surfaces include: ~0.8-0.9 (highly reflective) for fresh snow; ~0.05-0.15 (minimal 

reflection and high absorption) for moist dark soil; and, ~ 0.15-0.25 for green grass. Longwave 

radiation (or thermal infrared energy) plays a key role in the energy balance, with the land 

surface emitting it and absorbing it from the atmosphere. Boltzmann law is employed to 

describe emitted longwave radiation from the land surface. 

 



 

7 

 

                    ↑ 𝐿𝑊 = ϵσ𝑇𝑠𝑘
4                                               (Equation 1.10) 

 

where ↑ 𝐿𝑊 represents the emitted longwave radiation, 𝜖 the emissivity, σ the Stefan 

Boltzmann constant (= 5.67*10-8Js-1m-2K-4) and Tsk the radiative temperature of the land surface 

(representing contributions from soil and vegetation surfaces), which is referred to hereon in as 

the skin temperature. For a perfect black body the value of ϵ is 1 and approximate values for 

some different surfaces from Brutsaert (2005) include: ~0.99 for fresh snow; ~0.95-0.98 for 

bare soil; 0.96-0.97 for tree vegetation; and, ~0.97-0.98 for grassy vegetation. 

 

The total sum of the major vector quantities of radiation – incoming shortwave (↓SW), 

incoming longwave (↓LW), reflected shortwave (↑SW) and emitted longwave (↑LW) – defines 

the net radiation (RN) that is available to the land surface, so    

          𝑅𝑁 =↓ 𝑆𝑊−↑ 𝑆𝑊+↓ 𝐿𝑊−↑ 𝐿𝑊                               (Equation 1.11) 

The soil type, terrain, and vegetation type and cover of the land surface typically varies 

over a range of spatial scales (Richter et al., 2004; Yates et al., 2003) which translates to 

variations in albedo and emissivity. This spatial heterogeneity implies that there can be 

significant variation in RN across landscapes which receive similar amounts of incoming 

radiation. 

 

(Source: https://climate.ncsu.edu/edu/EnergyBalance) 

Figure 1.1: Schematic of the major energy balance components at the land surface. 
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Most of the RN available to the land surface is subsequently partitioned to produce either 

latent (LE) or sensible (H) heat flux feedbacks to the atmosphere, in addition to a residual 

(typically smaller) energy flux into the soil termed the soil heat flux (G) as illustrated in Figure 

2.1. From Hsieh et al., (2009), G can be up to 50% of the RN for dry soil surfaces in some 

conditions. Soil temperature (TSoil) shares a strong relationship with G and is an important state 

of the land surface energy balance (De Ridder, 2009). 

 

From much of the literature (e.g. Beven, 2012; Brutsaert, 2005; Ladson and Weinmann, 

2008), LE, H and G are the main quantities resulting from RN partitioning at the land surface 

(Fig. 2.10. and Eq. (2.11)) and hence the energy balance can be expresseed as:  

 

                                                             RN = LE + H + G                                    (Equation 1.12) 

 

A major factor controlling the partitioning of RN, and an important link between the land 

surface energy and water balances, is the amount of soil moisture available for soil evaporation 

(E) and plant transpiration via root uptake (in combination referred to as evapotranspiration or 

ET), where ET is the expression of LE as a quantity of vaporised/transpired water over a given 

time interval. As soil moisture content (θ) approaches zero, LE becomes minimal and a greater 

portion of available energy at the land surface is fed-back to the atmosphere as conductive heat 

with an increase in H. Hence θ regulates RN partitioning into the major heat flux components 

(Reichle et al., 2002), thus influencing the Bowen ratio (Bowen, 1926): 

        

                   Bo = H/LE                                         (Equation 1.13) 

1.2.3 Observation of Land surface quantities 

The motor behind of much of the data assimilation research over the past couple of 

decades comes from the increasing availability of different spatially distributed data types 

related to land surface water and energy balance quantities, as observed from a range of 

satellite-based sensors—this aimed at improving LSM estimates. Therefore, it is also a 

motivator for the research in this thesis, where the assimilation of observation types that have 

yet to be widely tested in LSM assimilation studies i.e. LAI and SSM is examined. 

Remotely sensed data assimilation for spatially distributed modelling, which is 

ultimately of most interest for applications such as vegetation and water resources monitoring 
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as well as catchment water balance studies, involves greater complexity and therefore greater 

uncertainty. The processing of raw remotely sensed observations to produce specific data 

products is done with algorithms/models which can be complex, imperfect and introduce errors. 

Also, varying degrees of landscape heterogeneity can occur within remotely sensed 

measurement footprints, where spatial disparity between in-situ validation data and remotely 

sensed data (and the relative sparsity of in-situ monitoring across the world) presents a 

challenge for properly characterising uncertainty (Glenn et al., 2007; Kalma et al., 2008), and 

which also limits the ability for robust validation of model/assimilation output. 

The following sub-sections give an overview of observation methods relevant to the 

data that were used followed by a discussion of the remotely sensed data. 

1.2.3.1 Soil moisture 

Soil moisture is a crucial variable in hydrological processes (runoff, transpiration from 

the vegetation cover and evaporation from bare soil and). It impacts plant growth and carbon 

fluxes (Dirmeyer et al., 1999; Entekhabi et al., 1999). Ground based soil moisture content can 

be measured through gravimetric and in-situ dielectric based reflectometry techniques. 

(i) Determining soil moisture via the gravimetric method involves weighing a field 

collected soil sample of known volume as soon as possible after collection and weighing the 

same sample after it has been oven dried at 105 °C for >24 hours. Thus, the total volume, the 

mass of water and mass of dry soil particles for a sample are all known and with some basic 

calculations the soil moisture content can be determined using Equation (2.1). This is a 

relatively accurate method of determining soil moisture if done carefully due to the direct use 

of an actual field sampled volume of soil and simplicity of the measurements and calculations 

involved. A drawback of the gravimetric method is the destructive sampling (at the point-scale) 

and the human effort required for it, which limits the temporal frequency and the spatial 

coverage that can be obtained. 

(ii) Dielectric based techniques are used to measure soil moisture in-situ and are also 

limited to the point-scale, but can be set up for continuous measurement over time. They 

provide non-destructive measurements where probes of a known length are inserted in the soil 

and act as wave-guides for transmitted electromagnetic pulses (Topp et al., 1980). The 

propagation time of a pulse along the wave-guides is a function of the dielectric constant of soil 

surrounding them. Since liquid water has a high dielectric constant relative to dry soil the 

electromagnetic pulse travel time is a strong function of soil moisture content, thus time 
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measurements from these instruments can be converted to soil moisture content via a calibration 

equation. 

(iii) The work of Ulaby, (1986, 1982) provides details on background theory and some 

practical aspects of remote sensing for soil moisture which is based on measuring microwave 

radiation. As presented by Wagner et al., 2007), key microwave bands in the electromagnetic 

spectrum that are relevant for soil moisture retrieval (with specific frequency (f) and wavelength 

(λ) ranges) are: L-band (f = 1-2GHz, λ = 30-15cm), C-band (f = 4-8GHz, λ = 7.5-3.8cm) and 

X-band (f = 8-12GHz, λ = 3.8-2.5cm). Microwave remote sensing can typically provide 

measurements for soil moisture estimation for the top few centimetres of soil, where the 

penetration depth into the soil is ~0.1-0.2 times the wavelength (Moran et al., 2004). Analogous 

to the basic principles behind the in-situ methods mentioned previously, microwave emissions 

from soil are sensitive to the soil dielectric constant which varies greatly with soil moisture 

content (Jackson et al., 1996; Moran et al., 2004). Passive and active microwave remote sensing 

are two distinct approaches relating to soil moisture retrieval. 

Regarding the passive approach, a radiometer sensitive to natural microwave emissions 

from the land surface is used with the brightness temperature (TB) being the actual quantity 

measured. TB is a product of the emissivity of a surface and its physical temperature (Jackson 

et al., 1996). Independent measurement of physical temperature enables emissivity to be 

determined, which then provides the link to estimate soil moisture content. Some examples 

detailing soil moisture retrieval from TB measurements can be found in works by Gao et al., 

(2006) and Owe et al., (2008) amongst others. Increased vegetation cover and surface roughness 

can hamper the ability to retrieve soil moisture from the measurements, but this becomes less 

of a problem with increased wavelength (Jackson et al., 1996; Moran et al., 2004). Active 

sensing techniques are radar based where microwave pulses are transmitted to the land surface 

and a backscattering coefficient (σo) is determined by comparing transmitted and received 

signals (Jackson et al., 1996). Soil moisture can be retrieved using σo which is related to 

emissivity and hence is sensitive to contrasts in dielectric properties between wet and dry soil 

(Jackson et al., 1996; Ulaby, 1986).   

Application of active techniques is that they can provide higher spatial resolution data 

than passive techniques (Entekhabi et al., 2010). Therefore, algorithms for retrieving soil 

moisture from σo are more complicated than from passive radiometer data (Jackson et al., 1996), 

with issues of sensitivity to vegetation and surface roughness still needing to be fully overcome 

(Moran et al., 2004; Wagner et al., 2007). Change detection algorithms (e.g. Wagner et al., 
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1999) are a promising approach for addressing the challenges of active sensor moisture 

retrieval. The basis of these is that noise in the measured signal is assumed to either be constant 

over time (bare ground roughness and topography) or have seasonal periodicity (vegetation). 

Therefore, the challenge is to adequately quantify and correct for the noise, and while some 

algorithms may do a reasonable job at this, vegetation may not always have the same seasonal 

variation over time in some regions. The recently-launched (early 2015) Soil Moisture Active 

Passive (SMAP) mission satellite combines both a passive radiometer and active radar that 

provide data with the best features of both sensing techniques – the greater overall certainty 

associated with passive microwave data retrieval and higher spatial resolution of active data 

(Entekhabi et al., 2010). 

The C-band Advanced Microwave Scanning Radiometer (AMSR-E) on the NASA 

AQUA satellite (Njoku et al., 2003) is a prominent passive sensor which recently stopped 

operation (in October 2011). Observations represent ~1-2 cm soil depth and derived moisture 

products can have a spatial resolution down to ~25 km (Owe et al., 2008). Close to a 10-year 

observation series exists from AMSR-E and it has been replaced by its successor AMSR2 

(Imaoka et al., 2010) which has similar measurement specifications. A prominent active sensor 

is the C-band Advanced Scatterometer (ASCAT; Wagner et al., 2013) on the Meteorological 

Operational satellite (MetOp). ASCAT soil moisture data represent the top ~1-2 cm with spatial 

resolution down to ~12.5 km (Wagner et al., 2013), and are typically produced as a scaled 

wetness index from 0-100% as opposed to explicit volumetric moisture content quantities. 

Numerous validation studies have been carried out based on these soil moisture products 

(either from passive and active sensors) against in-situ moisture observations across different 

regions world-wide. For instance, Albergel et al., (2012) assessed both SMOS and ASCAT 

(together with a blended observation/model product), and Su et al., (2013) assessed SMOS, 

AMSR-E and ASCAT over Europe, the USA and Australia and for parts of Africa. From these 

studies, the overall error in the passive and active sensor products appear relatively comparable. 

While there is variation in the temporal repeat, spatial resolution and observation depths 

between them, they each contain information which can potentially contribute to improved 

model estimates via data assimilation. 

However, incorporating the full range of moisture products available from the different 

sensors and based on various retrieval algorithms into data assimilation experiments was 

beyond the scope of this research. 
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1.2.3.2 Vegetation States 

LAI is defined as half the developed area of photosynthetically active elements of the 

vegetation per unit horizontal ground area. It determines the size of the interface for exchange 

of energy (including radiation) and mass between the canopy and the atmosphere. This is an 

intrinsic canopy primary variable that should not depend on observation conditions.  

Therefore, its estimation from remote sensing observations is scale dependent (Weiss et 

al., 2000; Garrigues et al., 2006). Note that vegetation LAI as estimated from remote sensing 

includes all the green contributors such as the understory when existing under forests canopies. 

However, except when using directional observations (Chen et al., 2005), LAI is not directly 

accessible from remote sensing observations due to the possible heterogeneity in leaf 

distribution within the canopy volume.  

Therefore, remote sensing observations are rather sensitive to the ‘effective’ leaf area 

index, i.e. the value that provides the same diffuse gap fraction while assuming a random 

distribution of leaves. The difference between the actual LAI and the effective LAI may be 

quantified by the clumping index (Chen et al., 2005) that roughly varies between 0.5 (very 

clumped canopies) and 1.0 (randomly distributed leaves). Note that similarly to the other 

variables, the retrieved LAI is mainly corresponding to the green elements: the correct term to 

be used would be GAI (Green Area Index) although it is usually proposed to still use LAI for 

the sake of simplicity. 

1.2.4 Land Surface Models (LSMs) 

Important parameters such as soil moisture content, soil temperature, soil physical 

properties, vegetation cover, and physical and biological properties linked to specific vegetation 

categories control the partitioning of available net radiation energy at the land surface into latent 

and sensible heat feedbacks. These processes rely on different aspects. LSMs try to combine 

these factors in a mathematical framework, together with meteorological variables, for 

predicting water evaporation from soil and/or its transpiration through vegetation on a 

continuous time scale. 

LSMs reveal several limitations since they attempt to represent highly fluctuating and 

complex physical mechanisms through empirically and/or simplified derived mathematical 

relationships. One more significant issue is that parameter values are often difficult to address 

because of the limited information on model soil and vegetation properties to precisely highlight 

the high temporal and spatial variation of these quantities (Franks and Beven, 1999; Yates et 
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al., 2003). While field measurements can assist in parameterizing models at the point scale with 

considerable effort (Mertens et al., 2005), this is more challenging when modelling across 

spatially heterogeneous regions without measurements especially the case of West Africa, (e.g. 

spatial remotely sensed soil moisture data is not of a depth that can provide direct information 

on root-zone soil hydraulic properties). Complexity of numerous models comes from the fact 

they often have several parameters for them all to be optimised with unique solution given a 

limited number of relevant types of field measured data (Franks and Beven, 1999). Inaccuracy 

in meteorological forcing data also affect the quality of model output. Overall, LSM predictions 

are intrinsically uncertain, with prediction uncertainty consistently rising with time. 

Data assimilation is thus well appropriate to improve LSM predictions (e.g. Crosson et 

al., 2002; Reichle et al., 2008) since it allows to spatially and temporally integrates the observed 

information into LSMs in a consistent way to unobserved locations, time steps and variables. 

A major aspect of assimilation is consideration of estimates of uncertainty inherent in both 

model estimates and observed data, in a way to to adequately weight the degree of model state 

adjustment for improved predictions. Estimates of errors in different related model variables 

provide information to relate the updates made directly to one variable from an observation 

with updates to other related model variables. Global coverage and regular temporal repeat of 

emerging remote sensing data streams, related to land surface state and flux quantities, 

improves the prospects for routinely improving LSM predictions over different spatial scales 

via data assimilation. 

In this thesis, the assumption put forward is that due to imperfect model architecture and 

parameter estimates, the major improvements to reanalyses of any particular LSM state coming 

from data assimilation would be from assimilating observations of the same variable or its most 

closely related one. Considering this hypothesis, model states would best be adjusted by the 

observation chosen to fit the variable of interest. In addition, this would not necessarily result 

in the most physically realistic values for all states. If the aim is to improve for instance LAI 

and SSM monitoring, then it seems natural to test the assimilation of LAI and SSM 

observations. Very little research has focused on the joint assimilation of remotely sensed 

instantaneous estimates of these quantities, perhaps partly due to the fact that these are emerging 

products. Therefore, the validation of such products within data assimilation systems are still 

major challenges, especially in data-sparse regions—which are already threatened by climate 

change—like West Africa. 
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It is well known that SSM and LAI share a link with weather and hydrology through 

regulating the partitioning of available energy at the land surface into LE and H (De Ridder, 

2009; Koster et al., 2011, 2004; Pielke et al., 1998; Pitman, 2003). LSMs are designed to 

represent these state/flux processes, which relate to the energy and water balance components 

presented in section 2.1, in order to support tasks such as monitoring of land surface variables 

through data assimilation. Basically, a LSM is intended to represent the exchange of water and 

energy fluxes at the Earth surface–atmosphere interface via biophysical processes using 

physically-based equations. They include energy balance calculations for quantifying these 

fluxes, which factor in physical characteristics of the land such as vegetation cover and 

associated plant transpiration, along with formulations linking soil state dynamics (Ek et al., 

2003; Overgaard et al., 2006). 

Performing experiments of simulations through running LSMs requires time series 

meteorological forcing data inputs which provide values for water and energy supply to the land 

surface (as precipitation and radiation data) along with values for near surface atmospheric 

conditions with which calculations are made for evaporative demand. Model specific parameter 

data is required to quantify soil and vegetation properties which influence water and energy 

fluxes, and a list of inputs specific to the CO2-responsive version of Interactions between Soil 

Biosphere Atmosphere i.e. the ISBA LSM (Calvet et al., 2004, 1998; Gibelin et al., 2006; 

Noilhan and Mahfouf, 1996). Uncoupled/stand-alone LSMs can be forced with meteorological 

variables which are usually routinely observed by national meteorological services or reanalysis 

data. This approach was used throughout this research in the experiments involved the ISBA 

model. 

Another important characteristics within LSMs are soil parameters, especially those 

linked to the water retention/mobility properties of soils which impact on water availability to 

plants towards therefore available energy partitioning (main details are given in section 2.1). 

Key vegetation parameters can include time series of LAI from remote sensing and RZSM 

distribution, all of which being greatly impacted by hydrometeorological extremes such as 

floods and droughts. The spatial and/or temporally variation in soil and vegetation parameters 

enable the representation within LSMs of landscape heterogeneity and therefore the variability 

of energy and water balance components related to hydrometeorological extremes are better 

monitored and predicted. 

Conversely to parameters, prognostic state variables require initial conditions to be 

prescribed and subsequent values are calculated as a function of previous model time step 
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values. Thus, they keep some memory relating to water and energy balances as they change 

with new forcing data at each time step. Key state variables in LSMs typically include soil 

moisture content and soil temperature (e.g. Dai et al., 2003). 

Over the past few decades, LSMs evolution has been marked by a huge increase of the 

level of information detail attempting to improve their accuracy with more realistic 

representations of soil, vegetation and land-atmosphere interactions. In order to give a general 

overview, the following paragraphs provide a synthesis of the work of Pitman, (2003) and 

Sellers et al., (1997) who classified models as first, second or third generation in their reviews 

of LSM evolution. 

First generation of LSMs are the most simplistic – the basic bucket model from Manabe, 

(1969) being a classic example. In this model, a single 15cm soil layer is used – it fills from 

precipitation, after filling any precipitation becomes surface runoff and water depletion from 

the soil occurs via ET. In order to derive ET, a potential value is calculated (applying the vapour 

pressure gradient form as described earlier) and then a simple linear soil moisture availability 

factor (β) based on the bucket water content (0 to 1 from completely dry to saturation) is used 

as a multiplier to determine actual ET. In this model, the major limitation is that an aerodynamic 

resistance term is used in ET calculations and vegetation canopy (stomatal) resistance is not 

included. This limitation is critical since plant stomatal control on transpiration in the presence 

of freely available water has an influence on ET (Milly and Shmakin, 2002). Stomatal resistance 

describes the regulation of water vapour transpiration through stomates in plant leaves. Further, 

Pitman, (2003) notes that only 1 or 2 soil layers are generally considered in first generation 

models and that soil temperature variations might also not be adequately represented from short 

term to multi-annual time scales. 

Second generation (called also biophysical) models as described by Sellers et al., (1997) 

present further advanced vegetation representation than first generation ones which are 

described as representing vegetation as passive. This second generation of models aims to 

represent a soil-vegetation system interacting with the atmosphere. Among the advances in 

these models is they include canopy interception (and evaporation) with a more complex 

representation of soil moisture dynamics typically using Richard’s equation (Pitman, 2003). 

Some examples of second generation models are the Biosphere-Atmosphere Transfer Scheme 

(BATS) by Dickinson, (1984), the Simple Biosphere Model (SiB) by Sellers et al., (1986) and 

the VB95 model (Viterbo and Beljaars, 1995) developed for ECMWF. 
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Conversely to first generation models, vegetation canopy resistance was incorporated 

more realistic biophysically based model structure (according to Sellers et al., 1997). Moreover, 

second generation models usually contain multiple soil layers with root distribution and 

improved soil temperature and moisture representation (Pitman, 2003). 

Even though second generation models present a specific representation of vegetation, 

a limitation is noted on stomatal resistance (which is based is based on empirical relationships). 

Throughout the development of third generation (or physiological) models, more attention were 

considered on the mechanisms of plant stomatal functioning driven by photosynthesis. Thus, 

explicit representation of photosynthesis and the use of CO2 by vegetation in relation to stomatal 

resistance and transpiration is a typical feature of them (Pitman, 2003; Sellers et al., 1997). The 

other processes considered in third generation models like soil hydrology and soil temperature 

are usually similar to representations used in second generation models (Pitman, 2003). 

Although several improvements in recent years noted in the representation of some 

complex biophysical processes, incomplete model structure and errors within input data are still 

persistent, contributing to both error and uncertainty propagation. In terms of measurements 

accuracy and representation of spatial and temporal variability, uncertainty in initial state 

conditions, meteorological forcing data and parameter data are all sources of input error. 

Therefore, techniques such as data assimilation can play an important role in improving model 

representations of land surface states and their prediction through the combination of LSMs and 

available additional information from independent observations. 

1.2.5 Data Assimilation 

Data assimilation is defined by Holm, (2003) as an analysis (optimal state) resulting 

from the combination of a dynamic model of the physical system and a time series of distributed 

information from available observations. Data assimilation and the statistics describing it are 

thoroughly detailed by Evensen, (2009). In data assimilation, it makes more sense to consider 

the probability distribution function (pdf) for a model variable than single deterministic 

predictions since there are infinitely many equally likely solutions from a model’s integration 

through time (due to the different sources of uncertainty mentioned in the preceding section). 

From a pdf information, it is easy to estimate the most likely value (the mean) along with the 

uncertainty (the variance) for a specific aimed variable. 

Another definition of data assimilation is the estimation of the pdf of the model solution 

conditioned on measured observations Evensen, (2009). Basically, observed quantities which 
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can be on a variety of spatial and time scales and are related to model variables, are used to 

update model variables in a way which factors in the uncertainty of both observed and modelled 

quantities. In addition, Houser et al., (2010) defines land surface data assimilation as an 

approach which: “...aims to utilise both our knowledge of land surface processes as embodied 

in a LSM, and information that can be gained from observations, to produce an improved, 

continuous land surface state estimate in space and time”. Model data fusion is sometimes used 

as an umbrella term for the different approaches to combining observed and modelled 

information for improving predictions, encompassing both parameter optimisation and state 

updating (e.g. Keenan et al., 2011; Wang and Liang, 2009). The term data assimilation is 

considered to be more specific based on much of the literature referenced throughout this thesis 

and its use here refers exclusively to model state updating. 

1.2.5.1 Aim of Data Assimilation 

The use of independently observed data to enhance model predictions is not recent. 

Numerous publications have been performed on model calibration especially for hydrological 

applications, where discussion of and information towards different approaches can be found 

in Vrugt et al., (2006). A typical strategy is to calibrate for a particular variable (or variables) 

by optimising model parameter values so that some objective function for differences between 

predictions and observations of the variable(s) of interest is minimised. 

In contrast to optimisation with a focus limited to parameters, Vrugt et al., (2006) 

highlight that data assimilation gives specific value in sequentially updating model state 

variables through time whenever new measurements become available, to continuously 

improve predictions and estimate prediction uncertainty. The time step dependency of 

prognostic state variables enables the impact of updates to be carried forward to modelling time 

steps where observations are not available. Evensen, (2009) indicates there are differences in 

opinion between research communities about which approach – data assimilation or identifying 

parameters via optimisation – is best for providing proper scientific knowledge and improving 

modelled outcomes. 

Furthermore, parameter optimisation may also be of value in the LDAS context, 

however for a remotely sensed product such as soil moisture, which represents only the top few 

centimetres of soil there is no direct comparison for finding optimal soil properties over the 

deeper rooting zones, which fluxes depend on. Robust data assimilation techniques require the 

factoring in of model uncertainty and therefore state updating can be beneficial where there is 
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sub-optimal input data. Data assimilation can also update other unobserved model variables 

(e.g. root-zone moisture states) based on their relationship with the observed model variable. 

1.2.5.2 Data assimilation methods 

Authors such as Walker et al., (2005) discriminate between dynamic observer and direct 

observer data assimilation techniques. The first technique i.e. dynamic observer assimilation is 

intended at finding the best fit between predicted model states and observations, forced by the 

only initial state uncertainty and the observation uncertainty. It is likened to a calibration 

approach where the initial state values for a given assimilation period are optimised based on 

the full series of observations over that entire period. Four-dimensional variational (4DVAR) 

assimilation is an example of a dynamic approach and a limitation is that no model error is 

assumed (Holm, 2003). 

In addition, Walker et al., (2005) recapitulate direct observer assimilation as using the 

innovation – which is defined as the difference between an observation and a model prediction 

of the observation – to sequentially update model predicted state variables, whenever 

observations are available. The product of the innovation and a weighting factor – where the 

weighting represents the relative uncertainty in the observation and model predictions – is 

added to the predicted state variables in order to update them. (Holm, 2003) lists optimal 

interpolation (OI), three-dimensional variational assimilation (3DVAR) and the Kalman filter 

as common data assimilation algorithms, which are all direct observer approaches. 

Predicted model states, with direct integration, are simply replaced with available 

observed information. Model or observation uncertainty is totally disregarded (the observation 

is treated as being perfect) and this approach is therefore very limited. Differences between 

most of the other aforementioned approaches relate largely to how their respective weighting 

factors are defined. 

Firstly presented by Kalman (1960), the Kalman Filter (KF) is actually the basis of more 

modern versions such as the extended Kalman filter (EKF) and ensemble Kalman filter (EnKF). 

The weighting factor for KF approaches (called the Kalman gain) is based on estimates of 

observation error and on the model prediction error covariances being propagated forward in 

time along with the predictions themselves. With the standard KF a linearisation of non-linear 

models such as LSMs (through determining the tangent linear of the model) is used to estimate 

error covariances at each assimilation time (Bouttier & Courtier, 1999). By definition the EKF 

is where the model prediction is linearised using a Taylor’s series expansion (Walker et al., 
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2005). While error covariances can be propagated forward and estimated at assimilation times, 

actually defining the total model error in the first place – consisting of errors from initial 

conditions, forcing data, model physics and parameters – is extremely difficult (for any 

assimilation approach) (Bouttier & Courtier, 1999; Walker et al., 2005). 

For computational reasons, the Simplified Extended KF (SEKF) was chosen as the 

technique to use for experiments in this thesis due to its robustness – it is easy too implement, 

efficient and has been shown previously to provide good results (Albergel et al., 2017; Barbu 

et al., 2014; Leroux et al., 2018). It has also been used in its own right for various published 

assimilation studies (with some of these referenced in following chapters). A description of the 

SEKF and its implementation for experiments in this thesis is presented in chapter 1, while the 

generic KF formulation on which it is based is as follows: 

 

                                                    𝑋𝑘
𝑎 = 𝑋𝑘

𝑓
+ 𝐾(𝑍𝑘 − 𝑍𝑘

𝑓
)                                  (Equation 1.14) 

 

 

where subscript k refers to the assimilation time step, superscript f refers to a prediction 

and superscript a refers to an analysis (from an update). The model state vector is denoted by 

X and the observation is denoted by Z. The difference between an observed value and a model 

predicted value of the observation – i.e. the innovation (Zk – Zf
k) – is weighted by the Kalman 

gain (K) which determines the correction added to the predicted state vector. In addition to 

projecting from Z to X space, K is the weighting factor that represents the relative uncertainty 

of model predicted and observed values based on their covariances and is given by 

                                          

                                 𝐾 = 𝑃𝑘
𝑓

𝐻𝑇(𝐻𝑃𝑘
𝑓

𝐻𝑇 + 𝑅𝑘)−1                                  (Equation 1.15) 

 

where P represents the error covariance of the predicted model states and R is the error 

covariance of the observation. The matrix H is a nonlinear operator that relates the state vector 

X to the observation Z, with superscript T denoting the matrix transpose. Therefore, if P is large 

compared to R (i.e. observations more trustworthy than model prediction), then K will 

approximate to 1 when X and Z are the same scalar quantity (i.e. H = 1), and the innovation 

will be relied upon heavily to adjust the predicted states due to the small relative observation 

error. Alternatively, where R is large compared to P, K will approach 0 and the observation 

will not be trusted sufficiently leaving the final analysis vector 𝑋𝑘
𝑎 relatively unchanged, since 

the model’s prediction is likely to be more reliable in this case. 



 

20 

 

Evensen, (2009) and Maybeck, (1988) present comprehensive detail on the KF 

including its statistical basis. It is discussed with reference to Bayes’ theorem, given it is 

designed to determine the most likely value of a model state (the analysis) based on the pdf for 

an a priori model prediction conditioned on the pdf for some observed estimate of the modelled 

quantity. The pdf variances for predictions and observations are the quantities used for P and 

R respectively in Equation (2.26). As highlighted by Evensen, (2009) and Maybeck, (1988), 

amongst others, the statistical assumptions about the prediction and observation error 

distributions for an optimal KF are that they are zero mean (unbiased), independent of each 

other, represent random white noise, and are Gaussian. Errors may not be strictly Gaussian in 

reality, however it is often the case that only the mean and variance of error processes are 

known, and without clear knowledge of higher moment statistics a Gaussian distribution is the 

best assumption for the KF to minimise error in the analysis (Maybeck, 1988). 

1.2.5.3 The bias issues 

By definition, the KF is a linear combination of modelled and observed information, 

and based on the error distribution properties discussed in the previous section it deals 

specifically with correcting for random error in finding an optimal model prediction. Hence, 

systematic errors or biases between modelled and observed time series represent a challenge 

for data assimilation, which is an issue highlighted in several research article such as Reichle 

and Koster, (2004). 

Regarding observations of a state variable like soil moisture from remote sensing or in-

situ instrumentation, the dynamic range is a function of the measuring instrument(s) and 

algorithm along with associated uncertainties used to derive it. This range, together with the 

mean state over longer time periods (multi-annual, for instance) is likely to differ to that from 

a LSM which has its own inherent uncertainty issues arising from different sources, along with 

lack of information on soil parameters such as wilting point and field capacity (amongst others), 

which influence moisture dynamics (Koster and Milly, 1997). 

Furthermore, the existing bias between LSM estimates and remotely sensed 

observations is recognized as a problem in data assimilation framework, which must be related 

to the relative contribution to total bias from the model and observation uncertainties. Though, 

the accurate identification and quantification of this bias remains a challenge (without 

independent information). 
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Therefore, a typical approach to treat the bias problem is to rescale observations prior 

to assimilation so that the observed time series matches the model climatology. This can be 

done via the use of a cumulative distribution function matching (cdf-matching) of the observed 

series to the simulated one (e.g. Barbu et al., 2014; Draper et al., 2009; Drusch et al., 2005; 

Reichle et al., 2007; Reichle and Koster, 2004). Another way to do so is to match the observed 

series mean and standard deviation to that one from the model – as done by Draper et al., (2009). 

Despite the fact the previous approaches aimed at bias removal are relatively well 

documented they are not necessarily perfect. In fact, Reichle and Koster, (2004) established a 

relationship for rescaling remotely sensed soil moisture to model predictions over a one-year 

period, and when applied to longer-term (a nine-year) data series it reduced the bias but did not 

completely remove it. This shows the difficulty of thoroughly understanding bias relative to 

true climatology, particularly where only short data series are available. 

Although the rescaling approach to deal with observation/model state bias having 

limitations, it is actually the best-known option when there is a lack of additional information 

independent of the assimilated observations and model state predictions. Therefore, rescaling 

was applied in this thesis for experiments which involved remotely sensed data assimilation 

and with clear bias between observed and modelled states over a one-year period (i.e. bias could 

be computed for a full cycle of seasons). 

1.2.5.4 Summary of LSM Data Assimilation research 

One of the early illustrations of fact-finding the ability of data assimilation to improve 

LSM estimates is a study by Entekhabi et al., (1994). This study demonstrated the potential for 

improving soil moisture and temperature predictions over a 1 m deep soil profile by assimilating 

data that is representative of remotely sensed skin temperature and soil moisture observations 

of only the first top centimetres of soil (this is considered as the typical layer/depth range of 

real remotely sensed soil moisture data). 

Likewise, the work of Entekhabi et al., (1994), there are also several synthetic LSM data 

assimilation studies in the literature from over the years, including the work of Balsamo et al., 

(2007); Koster et al., (2009); Reichle et al., (2008), and Walker and Houser, (2004). Across 

these examples there is clear indication that assimilating near-surface soil moisture observations 

has potential for improving monitoring ability of soil moisture (including over the whole root-

zone). 
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Testing LSM data assimilation with real observed data is essential towards developing 

and having confidence in real-world assimilation applications, although it entails certain 

challenges which are not encountered in synthetic studies. Specifically, in dealing with real data 

it is unlikely that the truth is perfectly known (hence the purpose of assimilation in the first 

place) where the best estimate of it relies on well-defined observational and model prediction 

errors. Therefore, in the absence of reliable data independent of the assimilated observations 

and model predictions, this is difficult to achieve – as is performing robust validation of 

assimilation results to assess the viability of particular assimilation strategies. This also relates 

to the difficulty in understanding the true source of any bias between observations and model 

predictions as discussed in the previous section. 

Numerous investigations assimilating real one-dimensional point-scale data have been 

published, among them those by Heathman et al., (2003); Li and Islam, (1999) and Sabater et 

al., (2008) which involve soil moisture assimilation, and further demonstrate the potential for 

improving root-zone soil moisture prediction.   

Finally, the intent of LSM assimilation in many hydrological applications is to use 

remotely sensed observations in order to provide improved spatially distributed modelling. 

Therefore, in progressing beyond synthetic studies and one-dimensional studies using point-

scale field data to test the viability of particular LSM assimilation strategies, research into 

remotely sensed data assimilation is imperative despite the challenges. Many of the published 

remotely sensed data assimilation studies for LSMs have focused on assimilating microwave 

data, or the derived near-surface soil moisture products. These include (Draper et al., 2012; Liu 

et al., 2011; Margulis et al., 2002; Peters-Lidard et al., 2011; Reichle, 2005). 

Most LSM assimilation studies in the literature appear to involve soil moisture or land 

surface temperature ervations. This can be seen to the number of example citations provided in 

the previous paragraphs. Considering the assimilation of other data types has also been tested 

in some studies, such as LAI (e.g. Sabater et al., 2008). Most recently, there is a large interest 

in using multivariate data assimilation system as a unifying context in which various type of 

observations from different sources are incorporated in a complex model. This approach is 

based from the theoretical point of view, the more the information a system gets, the better the 

obtained analysis.  

And most lastly, Barbu et al., (2014) demonstrated that the joint assimilation of SSM 

and LAI shows a relevant positive impact on modelled soil moisture and LAI and a rather small 
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positive impact on evapotranspiration is observed for the correlations, as found in Albergel et 

al., (2017).   

1.2.6 Climate change impacts over Africa  

Climate change is undeniably occurring and poses new significant risks to a wide range 

of societies and natural systems. The latest report by the Intergovernmental Panel on Climate 

Change (IPCC) states global average surface air and ocean temperatures are increasing at rates 

unequivocal to any other period on record (IPCC, 2014). The resulting extreme conditions, 

expected to be exacerbated in the future, have already caused substantial flooding/drought and 

food shortage in Africa and constitute significant threats to water resource, agriculture, and 

public health management (Boko et al. 2007; Parry et al. 2007; Sylla et al. 2012). Africa is thus 

one of the most vulnerable continents to such changes, a situation aggravated by different 

interactions between population and ecosystems and low adaptive capacity (Lobell et al. 2011; 

Druyan 2011; Anyamba et al. 2014; IPCC 2014; Sylla et al. 2016). This is particularly true for 

West Africa, a region experiencing high water stress, lack of reliable obervation networks, and 

scarcity along with exponential population growth and facing recurrent and localized droughts 

and increased food shortage (Jenkins et al. 2005). While it is certain that climate change 

resulting from anthropogenic greenhouse gas (GHG) emissions will occur in West Africa 

including Burkina Faso via an increase in surface temperature and drought conditions (Sylla et 

al. 2010, 2015a; Diallo et al. 2012, 2016; Mariotti et al. 2014; Ibrahim et al. 2014), substantial 

uncertainty regarding the direction and magnitude on water resources and agriculture remains. 

In Burkina Faso, like most West African countries, water resources supply to satisfy population 

needs for domestic use and irrigated cropping is a key issue because of the high pressure on the 

resource. Climate change will thus affect future water resources availability through key LSVs 

such as soil moisture, surface runoff and evapotranspiration. 

These above challenges are the main reasons of the scientific questions that have been 

raised in this study as detailed in the following section. 

1.3 Research questions 

In this thesis, the main research question is the following: How to address the challenges of 

assessing past and future hydroclimate information over Burkina Faso through an integrated 

modelling approach involving land surface modelling, data assimilation and climate change 



 

24 

 

projections? 

The subsequent research questions have been investigated throughout this thesis:    

• Does a land surface model such ISBA suitable for representing past hydroclimatic 

conditions over Burkina Faso? 

The aim of this question is to better apprehend the reliability of the LSM ISBA in simulating 

past hydroclimatic surface states, which is highly dependant of the atmospheric forcing used i.e 

ERA-Interim and ERA5. The quality of the LSM passes through the validation of its 

atmospheric forcing.  

• What is the impact of assimilating vegetation and soil moisture products into ISBA LSM 

output in providing improved long-term characterization of hydroclimate conditions 

across Burkina Faso? 

In this above question, the added-value of data assimilation is investigated in order to see 

whether the improved/corrected data are able to represent correctly the land surface parameters 

over Burkina Faso. Additionally, it will be interested to see to what extent independent satellite 

datasets can be used to assess the quality of the reanalysis of LSVs.  

• What are the projected changes of hydroclimatic indicators (precipitation, 

evapotranspiration, soil moisture, surface runoff and aridity conditions) over Burkina 

Faso? 

In this third and last question, a focus is given to the annual mean changes of the above 

mentionned variables using high-resolution regional climate simulations in order to shed light 

on drought projections over Burkina Faso.  

1.4 Thesis objectives 

1.4.1. Main objective 

The overall goal of this thesis is to assess the past and future hydroclimatic conditions 

over Burkina Faso through the integration of land surface modelling, coupled data assimilation 

and climate change projections. 

1.4.2. Specific objectives 

This broader objective was broken down into the components listed below: 

• Evaluate the performance of the ISBA LSM to represent past hydroclimatic conditions 

over Burkina Faso; 
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• Assess the capacity of LDAS-Monde in providing improved long-term reanalysis of 

hydroclimate variables by jointly assimilating vegetation and moisture observations 

within the ISBA LSM; 

• Analyze the impact on climate change on hydroclimatic variables such as 

evapotranspiration, surface runoff, soil moisture, and their potential impact on water 

resources availability. 

1.5. Research hypothesis 

To provide answers to the previous research questions, a series of hypotheses have been 

formulated: 

• An accurate representation of surface state variables linked to hydrology, such as soil 

moisture and vegetation is critical in Western Africa especially for hydroclimatic and 

environmental monitoring.  

In this first hypothesis, we assume that accurately representing land variables is highly 

important for climate change management e.g. in order to cope with droughts, floods and 

extreme events. This is in line with the fact that West Africa including Burkina Faso is among 

the regions where soil moisture coupling with atmosphere are among the strongest worldwide 

and also, where LSVs remain very difficult to model with accuracy. 

• Coupled data assimilation of soil moisture and vegetation will improve the 

representation of hydroclimatic variables linked to water cycle in Sub-saharan Africa. 

The possibility of integrating soil water and vegetation observations into complex land models 

is proven to be one of the most promising data assimilation methods towards the correction of 

estimates linked to water and carbon cycles. Its application in the sub-region is highly 

appreciated. 

• Future hydroclimatic conditions will be highly affected by climate change 

Burkina Faso is a region experiencing high water stress and scarcity along with increasing 

aridity and localized droughts. The country is also expected to be threatened by future climate 

change resulting from anthropogenic greenhouse gas (GHG).  

1.6. Novelty 

Several LSMS, LDASs and RCMs now exist, amongst them are the Global Land Data 

Assimilation System (GLDAS, Rodell et al., 2004), the Carbon Cycle Data Assimilation 

System (CCDAS, Kaminski et al., 2002), the Coupled Land Vegetation LDAS (CLVLDAS, 
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Sawada, 2018; Sawada et al., 2015; Sawada and Koike, 2014), the U.S. National Climate 

Assessment LDAS (NCA-LDAS, KUMAR et al., 2018) as well as LDAS-Monde (Albergel et 

al., 2017) to name a few. More recently, soil moisture (SM) data from the Soil Moisture 

Operational Product System (SMOPS) has been assimilated in the Noah model (Kumar et al., 

2019). Those systems either optimize process parameters (e.g., CCDAS), state variables (e.g., 

GLDAS, NCA-LDAS, LDAS-Monde), or both (e.g., CLVLDAS). Only few studies have 

considered the integration of multiple remote sensing measurements (Albergel et al., 2017; 

Sawada, 2018) and even less have had a specific focus over West Africa (e.g., (Pinnington et 

al., 2018).  

In addition, and considering Burkina Faso, any study (in our knowledge) has been 

addressed to provide high-resolution ensemble projections for water resources using a regional 

climate simulations ensemble under the resolution of 30 kms. Therefore, considering Sub-

Saharan Africa, this study is among the first (if not the first to the best of our knowledge) aiming 

to produce and evaluate long-term reanalyses of LSVs by dynamically combing different 

sources of datasets in order to produce improved parameters linked to hydrological cycle as 

well as discussing future water availability due to anthropogenic climate change.  

1.7. Scope of the thesis 

The scope of this research was confined to the integration of land surface modelling, 

data assimilation and ultimately climate change projections for providing better prediction of 

hydroclimatic parameters over Burkina Faso. Using the objectives above as a guide, the primary 

focus was on assimilating different observation types (LAI and SSM) using reanalysis of land 

surface conditions and analyzing the impacts each had on predictions from that LSM already 

calibrated. This set of reanalysis derived from the experiments carried out throughout this thesis 

along with the projections in water resources availability will allow to better apprehend future 

water resources predictions planing and climate change monitoring.   

1.8. Expected results 

The main expectations from the studies conducted in this thesis are listed hereafter. 

• From the use of ISBA land surface model, a historical representation of key 

hydroclimatic variables will be described. This will allow to present a “first-state” 

representation of the past hydroclimatology of Burkina Faso as well as, to advance 

scientific knowledge in the area of land surface modeling for hydrological purposes in 
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Burkina Faso. 

• Improved (i.e bias-reduced) long-term reanalysis of historical hydroclimate variables 

will be provided by integrating soil moisture and vegetation observations in LDAS-

Monde data assimilation platform. This will raise awareness on the impact of data 

assimilation in enhancing land surface variables represetation, especially in data-sparse 

areas like Burkina Faso. 

• Finally, this thesis will yield information on the potential impacts of climate change on 

the hydroclimatology of Burkina Faso for a near (2041-2060) and far (2080-2099) future 

periods, thus supporting future planning efforts in water management sector as well as 

agriculture. 

1.9. Outline of the thesis 

This thesis is arranged into six chapters including this introduction chapter. 

Chapter 1: Covers a review of literature and provides a synthesis of background 

information underpinning the work in this thesis. This includes summaries of: water interaction 

and energy between the land surface and atmosphere; remote sensing observations related to 

the data types used in modeling experiments in this thesis; characteristics of LSMs and how 

formulations have changed over time; and, data assimilation background along with different 

methods.  

Chapter 2: covers presentation of the study area with description of Burkina Faso, 

including climate, vegetation, soil, hydrology, demography, environmental, social and 

economic activities. 

Chapter 3: presents data, methods along with set of materials used to describe the study 

area. It is also described in this chapter the data origin, processing methods, modelling setup 

and experiments as well as the different assessement methods used. 

Chapter 4: This chapter presents the validation of ISBA and LDAS-Monde over 

Burkina Faso. A primary task consisting of assessing the ability of atmospheric reanalysis to 

drive LDAS-Monde among previous ERA-Interim and ERA5 latest ECMWF reanalysis. This 

chapter concludes by using an independent validation of LDAS-Monde reanalysis using 

independent datasets such as evapotranspiration fluxes from the GLEAM (Global Land 

Evaporation Amsterdam Model). 
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Chapter 5: assesses the potential climate change impacts on water resources 

parameters, provides future aridity conditions and ultimately discusses future water resources 

availability over Burkina Faso. 

Chapter 6: ends with a general conclusion highlighting the need of integrating land 

surface modelling and data assimilation as well as climate change modelling. The results of the 

three specific objectives are summarized and finally, recommendations and perspectives are 

provided.  
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Chapter 2: Presentation of the study area 

This research is focused over Burkina Faso, a landlocked country in the Sahel region of 

West Africa. This chapter presents a comprehensive description of Burkina Faso which 

encloses its position, soil characteristics, land cover, climate, geology, topography, 

hydrography of the area, and population characteristics. 

2.1. Geographic location 

The area covered by Burkina Faso covers approximately 274000 km2 for over 20 million 

people (in 2019). The country shares its limits with six nations (Figure 2.1c). It lies between the 

Sahara desert and the Gulf of Guinea, south of the Niger River, between latitudes 9° and 15°N, 

and longitudes 6°W and 3°E. Burkina Faso has water bodies such as lakes and river basins 

throughout its territory. However, the largest water network is located in the south of the 

country, which shows three main river basins: the Volta, the Comoé, and the Niger (Simonsson 

and Stockholm Environment Institute, 2005). In the rest of the country, rivers flow 

intermittently. 

 

Figure 2.1: (a) climatic zones, (b) agro-ecological zones, (c) Regional boundaries of Burkina 

Faso (MA, 2017) 
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2.2. Relief and geology 

The topography of Burkina Faso is formed by two major types of terrain. The major part 

of the country is covered by a peneplain, which shapes a gently undulating landscape with, in 

some areas, a few isolated hills, the last vestiges of a Precambrian massif. On the other hand, 

the southwest of the country, presents a sandstone massif, where the highest peak, Ténakrou, 

presents an elevation of 749 m. The massif is bordered by sheer cliffs up to 150 m high. The 

average altitude of Burkina Faso is 400 m and the difference between the highest and lowest 

terrain is no greater than 600 m. Thus, Burkina Faso is considered as a relatively flat country. 

The geology of Burkina Faso is largely formed by Precambrian rocks of the Guinea 

Rise, a dome of Archaean rocks, composed largely of migmatites, gneisses and amphibolites, 

over which lie the greenstone belts of the early Proterozoic age. The latter are metasediments 

and metavolcanics assigned largely to the Birimian Supergroup, a series of rocks in which 

economically significant mineralization occurs. Pre-Birimian migmatites, gneisses, and 

amphibolites, located under the Birimian rocks, are the oldest rocks in the country. The 

Birimian deposits in the southwestern part of the country are typically divided between clastic 

and volcano-clastic formations. 

2.3. Vegetation and fauna 

Burkina Faso has a natural vegetation which is mainly driven by climatic conditions. 

The northern part of the country consists of savanna, with prickly shrubs and short trees that 

flourish during the rainy season. In the south, the prickly shrubs give way to scattered forests, 

which become denser along the banks of the perennial rivers. The karite (shea tree) and the 

baobab (hibiscus tree) are very common in this region. Animal life includes buffalo, antelope, 

lions, hippopotamuses, elephants, crocodiles, and monkeys. Bird and insect life is rich and 

varied, and there are many species of fish in the rivers. Burkina Faso’s national parks include 

Po in the south-centre of the country, Arly in the southeast, and “W” in the east, standing at 

both sides of the border with Benin and Niger. 

2.4. Climate 

Burkina Faso's climate is principally marked by a tropical climate with two different 

seasons (Figure 2.2). In the rainy season (four months, May/June to September), the country 

receives between 600 and 900 mm of rainfall; while the dry season is characterized by a hot 

and dry wind from the Sahara (Waongo et al., 2014). Three climatic zones (Figure 2.1a) can be 
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defined: the Sahel (SH), the Sudan-Sahel (SS), and the Sudan-Guinea (SG). The Sahel in the 

north typically receives less than 600 mm of rainfall per year and has high temperatures, up to 

47 °C sometimes. Compared to the other parts of Burkina Faso, the SG zone receives more than 

900 mm of rainfall each year and has lower average temperatures. 

 

Figure 2.2: Long-term (1980–2012) average rainfall (mm) and Temperature (°C) per month 

for the climatic zones of (a) SH, represented here with the city of Ouahigouya; (b) SG, 

represented here with the city of Ouagadougou; and (c) SS, represented here with the city of 

Bobo-Dioulasso (ANAM, 2018). 

2.5 Hydrography 

The former name of Burkina Faso i.e. Upper Volta comes from its location with to three 

rivers which cross it: the Black Volta (or Mouhoun), the White Volta (Nakambé) and the Red 

Volta (Nazinon) (Figure 2.3). The Black Volta is one of the country's only two rivers which 

flow year-round, the other being the Komoé, which flows to the southwest. The basin of the 

Niger River also drains 27% of the country's surface. The Niger's tributaries – the Béli, the 

Gorouol, the Goudébo and the Dargol – are seasonal streams and flow for only four to six 

months a year. Therefore, they are often the source of important and large floods. The country 

also contains numerous lakes – the principal ones are Tingrela, Bam and Dem. The country 

contains large ponds, as well, such as Oursi, Béli, Yomboli and Markoye. Water shortages are 

often a problem, especially in the north of the country. 
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Figure 2.3: Watershed map and hydrographic network of Burkina Faso (MEE, 1998). 

2.6. Soil and land use 

Soil components play a primordial role in surface hydrology especially for infiltration 

and runoff processes (Kinnell, 2010). Topsoils in most parts of the country predominantly 

comprise an erodible texture such as sand-clay-loam, loam, and sandy-loam (Figure 2.4). 

 

Figure 2.4: Soil type classification across Burkina Faso (FAO, 2015). 

Land use and land cover in Burkina Faso are characterized mainly by savannah, bare 

soil, grasslands, woodlands and forests, croplands and pastures. The natural vegetation is 



 

33 

 

dominated by savannah (grassland sprinkled with shrubs and trees), forest (forest administrative 

park, mall dense and gallery forest). Cropland activities are among the most important in the 

country. However, Burkina Faso's land cover is constantly changing with different patterns and 

magnitudes. The conversion of grasslands, woodlands and forests into croplands and pastures 

has risen dramatically during the last few decades. Tropical dry forests, for instance, have been 

severely fragmented and disturbed and have tended to disappear (Cobo et al., 2010; Lal, 2001; 

Sivakumar, 200s7). The main drivers behind these changes combine population growth, rising 

demand for agricultural products, dietary changes, agricultural trade and adjustment, 

dependence on wood energy, recurrent bush fires, etc. (Toy et al., 2002; UNEP 2012; IRIN, 

2009). 

2.7. Demography, environmental, social and economic activities 

The population of Burkina Faso is approximately 20 million of people (2020) consisting 

mostly by Mossi's ethny. They are largely concentrated in the South and Centre of the country. 

The country’s experiencing an increase of rural population density (Figure 2.5) oftenly 

exceeding 48 inhabitants per km2 (120 inhabitants per m2). 

 

Figure 2.5: Development of rural population density in the provinces of Burkina Faso 

between 2001 and 2014 (INSD, 2014). 

This population density causes annual migrations of hundreds of thousands of the 

population to Cote d'Ivoire and Ghana for seasonal agricultural work with important impacts 
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on the country's economy. The country experiences also recurring floods which are significant 

natural hazard. Current environmental issues include also: recent droughts and desertification 

severely affecting agricultural activities, population distribution, and the economy; 

overgrazing; soil degradation; desertification. 

Economic activities are generally based on agriculture (substance farming and livestock 

raising). The country presents an average income purchasing-power-parity per capita of $1,900 

and nominal per capita of $790 in 2014 (World Bank, 2019). More than 80% of the population 

relies on small-scale agriculture, with only a small fraction directly involved in industry and 

services. Many components among highly variable rainfall, poor soils, inadequate means of 

communications and low literacy rate make the country's economy very vulnerable. 

2.8. Conclusion of the chapter 

This chapter provided insights on Burkina Faso geographical location as a semi-arid 

country. Key aspects among its geography, terrain, climate, hydro-geology, soil properties have 

been provided. Socioeconomic information have been also addressed and the possible impacts 

they could have on geophysical characteristics as well as natural resources of the country. 
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Chapter 3: Data, materials and methods 

In this thesis, numerous types of data, materials and methods are used. They have been 

derived from data collection and high-performance computations. The in-situ data were 

collected from National meteorological service level and the satellite products freely available 

from state-of-the-art online databases. All the materials and data have been treated following a 

concise methodology described throughout the present chapter and will serve as main 

datasets/materials for the upcoming chapters highlighting the thesis results.   

3.1 Data 

3.1.1 In Situ Measurements 

• Precipitation and incoming solar radiation (SWin) 

In this thesis, in situ data of precipitation for the 2010–2016 period were provided by 

the Agence Nationale de la Météorologie (ANAM) of Burkina Faso, as previously used by 

Waongo et al., (2014). This time-span was choosen after a quality-control check considering 

the whole network spanning over the study area. It consists of 134 stations, which are relatively 

well spread over the country except for less density in the north of Burkina Faso also called the 

Sahel zone (SH) and the eastern part of the Sudan-Sahel zone (SS) of the domain (Figure 3.1, 

lower panel). All stations include a daily time series of good quality (with few missing data) 

over the considered period. The in situ measurements of SWin are also from the ANAM with 

data available every 15 min for 4 stations (Figure 3.1, upper panel). In the present study, 24h-

mean values of these radiative fluxes are used. 
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Figure 3.1: Isohyets and dotted symbols represent annual precipitation (upper panel) and 

stations (rainfall and solar radiation). The three agroecological zones (SS, SS and SG) across 

Burkina Faso are highlighted in lower panels for soil moisture and vegetation products. 

3.1.2 Satellite-based datasets 

• ASCAT Soil Water Index and GEOV2 Leaf Area Index 

This thesis makes use of the ASCAT Soil Water Index (SWI) product distributed by the 

CGLS through its third version, i.e., SWI-001 Version 3.0. The SWI refers to the soil moisture 

content in relative units between 0 (dry) and 100 (saturated). It is computed based on a recursive 

exponential filtering method (Albergel et al., 2008) using the backscatter observations from the 

ASCAT C-band radar on board MetOP satellites (Bartalis et al., 2007; Reichle et al., 2004). 

The SWI retrieved from the exponential filter using a T-value (characteristic time length; the 
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higher the T-values, the smoother the SWI) of one day is used. It represents the SWI in the top 

soil layer (Albergel et al., 2008). It is used in the present study as a proxy for SSM. During the 

period considered in the experiment, the amount of soil moisture data increases in 2015 because 

the data from MetOP-B (launched in 2012) are used in addition to those from MetOP-A 

(launched in 2006).  

For the purpose of assimilating the SSM product, a rescaling of observations into model 

climatology space is needed in order to avoid introducing any artificial bias in the system 

caused, for example, by a possible mis-specification of physiographic parameters related to soil 

texture types (Drusch et al., 2005; Reichle et al., 2004). To that end, the SWI product is 

transformed into model-equivalent SSM (from the model second layer of soil, 1–4 cm), based 

on the first two statistical moments (the mean and the variance) through a linear transformation 

(Scipal et al., 2008). The relevance of performing a seasonal rescaling was emphasized by 

several studies (e.g., Barbu et al., 2014; Draper et al., 2011). In this study, the matching of SSM 

statistical distributions was made on a monthly basis by using a 3-month moving window over 

the January 2007–June 2018 period after screening for the presence of urban areas (>15%) and 

complex terrains (1500 m a.s.l.). Finally, the SWI observations are interpolated by an arithmetic 

average to the 0.25° model grid points (from their original 12.5 km spatial resolution). 

The GEOV2 LAI observations are also distributed by the CGLS. They are retrieved 

from the SPOT-VGT and PROBA-V satellite data using the methodology prescribed in Verger 

et al. 2014. The 1 km × 1 km resolution observations are interpolated to 0.25° model grid points 

through an arithmetic average as in Albergel et al., (2017), so that at least 75% of the grid points 

are observed. In terms of temporal resolution, LAI observations are available with a 10-day 

frequency (at best). Figure 3.1 (lower right) illustrates the averaged LAI (January 2001–June 

2018). 

It is worth emphasizing that these satellite observations have been validated in previous 

studies over Western Africa through the ALMIP experiment with quite good consistencies with 

in situ data of soil moisture in Burkina Faso (Albergel et al. 2012, Fatras et al. 2014; Louvet et 

al. 2015) - making them reliable in terms of use for our study domain. 

3.1.3. Reanalyses: ERA-Interim, ERA5 atmospheric reanalyses and ERA5-Land 

reanalyses. 

• ERA-Interim 
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ERA-Interim is a global atmospheric reanalysis produced by the ECMWF (Dee et al., 

2011). Reanalyses provide a numerical description of the recent climate by combining models 

with observations using data assimilation systems. ERA-Interim overlays the period from 1 

January 1979 onward and continues to be extended forward in near-real time. It is based on the 

integrated forecast system (IFS) version 31r1 (more information at 

https://www.ecmwf.int/en/forecasts/documentation-and-support/, last access: November 2018) 

using approximately an 80 km (T255) spatial resolution and with analyses available for 00:00, 

06:00, 12:00, and 18:00 UTC. A detailed explanation of the ERA-Interim product archive is 

provided in Berrisford et al., (2009); Dee et al., (2011). 

• ERA5 

Recently, ERA5 (Hersbach and Dee, 2016), the latest version of ECMWF reanalyses, 

was released as the fifth generation produced. It is envisioned that ERA5 will replace the release 

of the current ERA-Interim reanalysis, from 1979 to the near real time period (on a regular 

basis). Regarding climate information, ERA5 has numerous improved characteristics compared 

to ERA-Interim reanalysis. It presents one of the most updated versions of the Earth System 

Model and data assimilation techniques used at ECMWF, which enables the use of more 

sophisticated parametrization of geophysical processes in comparison to the previous versions 

used in ERA-Interim. Moreover, ERA5 has two other important features, which are the 

improved temporal sampling and spatial resolution: From 6-hourly in ERA-Interim to hourly 

in ERA5, and from 79 km in the horizontal dimension and 60 vertical levels to 31 km and 137 

levels in ERA5. Eight variables from ERA5 and ERA-Interim have been used to constrain 

LDAS-Monde, including the lowest model level (about 10-m above ground level), air 

temperature, wind speed, specific humidity and pressure, and the downwelling fluxes of 

shortwave and longwave radiation as well as precipitation partitioned in the liquid and solid 

phases (the latter being null over the considered domain). 

At the time of this research thesis, ERA5 is a new product and to the best of our 

knowledge, only three other studies compared the performance of ERA5 and ERA-Interim. In 

Albergel et al., (2018), the authors assessed the two reanalysis ERA5 and ERA-Interim using 

them to force the ISBA LSM over North America. Better performances in the representation of 

evaporation, snow depth, soil moisture, and river discharge estimates were observed in the 

simulations forced by ERA5. They were attributed by the authors to the improved precipitation 

estimates. Urraca et al., (2018) compared SWin estimates from ERA5 and ERA-interim at a 

global scale, and observed a better performance with ERA5. Finally, Beck et al., (2018) 

https://www.ecmwf.int/en/forecasts/documentation-and-support/
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highlighted the good performance of ERA5 precipitation with respect to 26 gridded subdaily 

precipitation datasets using Stage-IV gauge-radar data for the evaluation over the continental 

United States of America. 

3.1.4. Evapotranspiration, Gross Primary Production, and Sun-Induced 

Fluorescence 

This thesis makes use also of independent datasets of evapotranspiration and the CO2 

uptake from photosynthesis defined as gross primary production (GPP) as well as in order to 

evaluate the quality of the surface reanalysis generated in this study. These previous datatsets 

are useful evaluation tools since they are very difficult to measure, thus valuable for Sub-

saharan context. Note that only a limited flux towers are available across Africa, which are 

insufficient for systematic evaluation of remote sensing fluxes such as evapotranspiration (for 

example).    

• Evapotranspiration 

Terrestrial evapotranspiration estimates are from the GLEAM (Global Land 

Evaporation Amsterdam Model) v3.1. product (Martens et al., 2017). They cover the period of 

1980–2016 and are available at a spatial resolution of 0.25° × 0.25°. The GLEAM dataset is 

widely used for investigating both trend and spatial variability in the terrestrial water cycle  as 

well as for evaluation purposes (e.g., Greve et al., 2014; Miralles et al., 2014; Zhang et al., 

2016) as well as land atmosphere interactions (e.g., Guillod et al., 2015; Miralles et al., 2014). 

In short, the model computes the terrestrial evaporation and root-zone soil moisture (Owe et al., 

2008) and is mainly driven by microwave remote sensing observations, the potential 

evaporation amount being constrained by satellite-derived soil moisture. GLEAM datasets have 

already been comprehensively validated against FLUXNET (Fluxnet Networks) observations 

and used for multiple hydro-meteorological applications over Sub-saharan Africa including 

Burkina Faso (Trambauer et al., 2014; Forzieri et al., 2017; Lian et al., 2018; Richard et al., 

2018; Vicente-Serrano et al., 2018; Zhan et al., 2019).  

• Gross Primary Production 

For the evaluation of the carbon uptake related to photosynthesis i.e GPP, we use 

estimates derived from meteorological parameters through the use of machine learning 

algorithms within the FLUXCOM project (Jung et al., 2017). These algorithms are trained using 

a combination of land cover data, observed meteorological data and remotely sensed vegetation 
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properties (fraction of absorbed photosynthetic active radiation). A model tree ensembles are 

also used to provide estimates of carbon fluxes at FLUXNET sites (including Burkina Faso) 

with available quality-filtered flux data, after which the trained model can be implemented 

globally using grids of the input data. This set of observations can be found at the Max Planck 

Institute for Biogeo-chemistry data portal (https://www.bgc-

jena.mpg.de/geodb/projects/Home.php, last access: December 2019) and is available at a 0.5° 

x 0.5° spatial resolution with a monthly temporal frequency over the 1982-2013 period. In this 

study, GPP products were used over the 2001–2013 time (time span available at the time of 

completion of the thesis).    

• Sun-induced fluorescence 

We also use estimates of sun-induced fluorescence (SIF) from the GOME-2 (Global 

Ozone Monitoring Experiment-2) scanning spectrometer (Joiner et al., 2016; Munro et al. 2006) 

evaluate GPP. Leroux et al., 2018 has shown that observations of SIF can be used as a proxy to 

evaluate the influence of data assimilation on simulated GPP using correlations. We use in this 

study the Level-3 v27 SIF product, giving a daily-averaged SIF at 0.5° × 0.5° resolution over 

the 2010–2016 period. Observations are rescaled to match the spatial resolution of the two 

atmospheric forcing data-sets, 0.25° × 0.25° and 0.50° × 0.50° for ERA5 and ERA-Interim, 

respectively. 

3.2 Materials 

3.2.1 The SURFEX modeling platform and ISBA model evolution 

The ISBA model is a component of the modeling platform called SURFEX “Surface 

Externalisée” in French (Martin et al., 2007, Le Moigne, 2009), developed at Météo-France at 

the CNRM (Figure 3.2). This platform describes the surface in four major categories called 

“tiles”: oceans or seas, lakes, nature (soil and vegetation) and urban areas. The physical 

parameters and fractions of each of the “tiles” are retrieved from the ECOCLIMAP database 

(Masson et al., 2003) which is a global database of land surface parameters at 1-km resolution. 

SURFEX can be coupled with an atmospheric model (Sarrat et al., 2009), it is the online version 

of the platform.  It can also be used uncoupled from the atmosphere. In this case, SURFEX is 

forced with observations or atmospheric reanalyses, this version is referred as “offline”. 

https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
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(Source: https://www.umr-cnrm.fr/surfex/) 

Figure 3.2: SURFEX modeling platform 

ISBA model (Noilhan and Planton, 1989 and Noilhan and Mahfouf, 1996) is therefore 

capable to simulate mass and energy balances in the soil-vegetation-atmosphere system of the 

nature “tile”. The first version of ISBA i.e. ISBA-standard, is a “bucket” model (Manabe, 1969). 

It was improved to represent soil surface humidity and evaporation at the soil surface using the 

“force-restore” method. In this configuration, the soil is characterized in two layers, one 

superficial layer with a thickness of one centimeter and a deep layer including the root zone. 

The thickness d2 of the latter varies according to the soil type and vegetation type. Both surface 

and deep ground temperatures Tg and T2 are simulated, as well as the surface and deep 

volumetric water contents wg and w2. In this initial version, the vegetation is described as a 

homogeneous layer and the surface is characterized by 8 parameters: the root depth d2, the 

minimum stomatal resistance SRmin and the contribution of the vegetation at the surface thermal 

inertia coefficient Cv, which are constants over time, then the vegetation proportion veg, LAI, 

roughness length z0, albedo α and emissivity ε which depend on the seasonal cycle. The 

stomatal resistance SR, i.e. the regulation of gas exchanges (CO2 and water vapour) between 

the leaf and its environment, is calculated according to the formalism of Jarvis, (1976). It takes 

into account the impact of environmental factors (soil water, air humidity, solar radiation and 
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air temperature) on the opening of stomata and thus on photosynthesis. A coefficient allows to 

represent the effect of soil drying, water stress, on the vegetation response. This coefficient 

varies from 0 to 1 depending on the humidity conditions of the root zone, from the wilting point 

to the field capacity. The evolution of this coefficient over time depends on the soil available 

water storage capacity. 

This basic version has been upgraded with new options and modules to simulate water 

and heat transfers at the surface along with more details. To the two-layer (“2L”) representation 

of the soil in the “force-restore” version has been added a third layer to create ISBA-3L (Boone 

et al., 2009). A multi-layer version which is more complex, allowing to represent the processes 

of water and heat diffusion in soil was developed in parallel (Boone et al., 2000). Surface 

hydrology has been improved by taking into account the heterogeneity under the rainfall grid 

(Decharme and Douville, 2006) as well as mesh processes such as drainage and runoff 

(Etchevers et al., 2001; Habets et al., 1999). 

3.2.2 ISBA-A-gs 

The ISBA-A-gs model (Calvet et al., 1998) based on the ISBA-standard model was 

developed to assess climate change impacts on vegetation while taking into account the induced 

effect of CO2 concentration increase in the atmosphere on vegetation (Figure 3.3). Apart from 

being able to simulate biomass and LAI (which is no longer considered as a model parameter 

but as a prognostic variable), it allows to represent the vegetation response facing water stress, 

temperature increase and increase of CO2 concentration, and thus to meet the requirements of 

resulting problems at parcel level (Garrigues et al., 2015; Gibelin et al., 2008; Rivalland et al., 

2005), at regional level (Brut et al., 2009; Calvet et al., 2012; Canal et al., 2014) and on global 

scale (Gibelin et al., 2008). 
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(Source: https://www.umr-cnrm.fr/spip.php?article146&lang=fr) 

Figure 3.3: ISBA-A-gs Land SurfaceModel main components 

The model used to describe the photosynthesis processes is the one from the Jacobs et 

al., (1996) which used the approach developed by Goudriaan et al., (1985). This latter allows 

to compute the canopy conductance from the net rate of assimilated carbon by the vegetation 

which have essentially three limiting factors: 

• the atmsopheric concentration of CO2; 

• the temperature; 

•  the photosynthetically active radiation (PAR); 

• the air humidity. 

This parameterization is derived from a set of equations that take into account the type 

of vegetation, C3 (Farquhar et al., 1980) or C4 (Collatz et al., 1992). ISBA-A-gs is able to link 

the stomatal conductance gs of a vegetation type to its net assimilated carbon through 

photosynthesis, An. In order to compute An (in mg CO2 m-2 of leaf s-1) and gs (in mm s-1), several 

variables computed by the model are required such as the leaf temperature Ts (in °C) as well as 

the soil water content. 

These processes at the leaf scale (photosynthesis and transpiration) are extrapolated at 

the scale of the canopy thanks to a radiative transfer scheme that take into account the 
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attenuation of global radiation within the canopy (Calvet et al., 1998 and Carrer et al., 2013). 

Thus, the net assimilated carbon together with the stomatal conductance at the canopy scale are 

obtained by integrating An and gs calculated at different levels within the vegetation canopy.   

An important parameter is used to initiate this LAI calculation when atmospheric 

conditions allow the plant to perform the photosynthesis: the minimum LAI (LAImin). The 

values of this defined parameter at the global scale have been fixed at 0.3 m2m-2 for C3 and C4 

crops and grasslands and deciduous trees, and 1 m2m-2 for evergreen trees. These LAI values 

arbitrarily chosen allow therefore to represent a possible interannual variability of the LAI 

values simulated by the model (Gibelin et al., 2006). 

ISBA-A-gs allows vegetation growth to be reproduced under water limited conditions 

by a parameterization of water stress which affects key parameters of photosynthesis in the 

model. It is the soil moisture that is estimated taking by into account the physical properties of 

the soil (the proportion of clay and sand, the wilting point, the field capacity and the amount of 

water at saturation) that will control the response of the vegetation to a soil dryness (stress 

function of ISBA-standard). 

For this thesis work, ISBA parameters are prescribed for 12 generic land surface types, 

which consist of (i) nine plant functional types (needle leaf trees, evergreen broadleaf trees, 

deciduous broadleef trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical 

herbaceous and wetlands), (ii) bare soil, (iii) rocks, and (iv) permanent snow and ice surfaces. 

Those parameters are derived from the ECOCLIMAP land cover database (Faroux et al., 2013).  

ISBA also provides estimates of soil moisture in the whole root i.e root zone soil 

moisture (RZSM). In fact, the model initializes the surface soil moisture at the surface level and 

propagates the information up to 1m of depth through the model’s physics.    

3.2.3 LDAS-Monde 

LDAS-Monde routinely uses a simplified extended Kalman filter (SEKF, Mahfouf et 

al., 2009) to assimilate observations of SSM and LAI. This is a sequential approach with a 

forecast step followed by an analysis step (see Figure 3.4 for schematic diagram describing how 

it works). 

• The forecast step propagates the initial state over a 24-h assimilation window with the 

ISBA LSM. Then, the analysis step corrects the forecast by assimilating observations. 

This step involves an observation operator defined as the product of the model 
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propagation of control variables over the 24-h assimilation window with the projection 

of those variables to observation equivalents. 

• In this study, the analysis step updates the modeled LAI and soil moisture from layer 2 

(1–4 cm) to layer 7 (60–80 cm). The approach is fully detailed in Albergel et al., 

(2017). 

 

Figure 3.4: Diagram depicting the sequential cycle of LDAS-Monde using a Simplified 

Ensemble Kalman Filter (SEKF). 

A mean volumetric standard deviation error of 0.04 m3·m−3 was affected to soil 

moisture in the second layer of soil (i.e., the model equivalent of the SSM observations). Then, 

for deeper layers, the mean volumetric standard deviation error of 0.02 m3·m−3 was used, as 

suggested by several authors for RZSM (Barbu et al., 2014, 2011; Draper et al., 2011; Mahfouf 

et al., 2009). The observational SSM error is set to 0.05 m3·m−3 as in Barbu et al., (2014). This 

value is consistent with errors typically expected for remotely sensed soil moisture (e.g., De Jeu 

et al., 2008; Draper et al., 2011; Gruber et al., 2016). Soil moisture observational and 

background errors are assumed to be proportional to the soil moisture range (the difference 

between the volumetric field capacity (wfc) and the wilting point (wwilt), calculated as a 

function of the soil type, as given by Noilhan and Mahfouf, (1996). The standard deviation of 

errors of GEOV2 LAI is assumed to be 20 % of GEOV2 LAI. The same assumption is made 

for the standard deviation of errors of the modelled LAI (20% of modelled LAI) for modelled 

LAI values higher than 2 m2·m−2. For modelled LAI values lower than 2 m2·m−2, a constant 

error of 0.4 m2·m−2 is assumed, according to Barbu et al., (2011). 
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3.2.4 RegCM4 (Regional Climate Model) description   

In order to investigate the future climate change impacts on hydrcolimatic parameters 

over Burkina Faso, we build a multi model ensemble based on RegCM4 regional climate model. 

The RegCM4 (Giorgi et al. 2012) is the latest version of a series of RCMs developed and 

maintained at the Abdus Salam ICTP (International Centre for Theoretical Physics) to study 

and understand, among other topics, climate change and its impact on hydrology, especially 

over developing countries. RegCM4 is a primitive equation, sigma vertical coordinate limited-

area model based on the hydrostatic dynamical core of the National Centre for Atmospheric 

Research/Pennsylvania State University’s Mesoscale Meteorological Model version 5 

(NCAR/PSU’s MM5; Grell et al. 1994). In the experiments presented here, interactions 

between the land surface and the atmosphere are described using the Community Land Model 

version 3.5 (CLM3.5; Oleson et al. 2008) while convective precipitation is calculated with the 

Massachusetts Institute of Technology (MIT) scheme of Emanuel (Emanuel 1991; Emanuel 

and Rothman 1999).   

RegCM4 is used to dynamically downscale at 25 km of horizontal resolution and 18 

vertical levels two ESMs participating in the Coupled Model Intercomparison Project Phase 5 

(CMIP5) (Taylor et al. 2012): Hadley Centre Global Environment Model version 2—Earth 

System configuration (HADGEM2-ES; Jones et al. 2011), Geophysical Fluid Dynamics 

Laboratory Earth System Model version 2M (GFDL-ESM-2M; Dunne et al. 2013). These 

ESMs are described in detail by (Taylor et al. 2012). Note also that these two ESMs were the 

only available at the time of completion of these simulations and are used to build a multi-

model-ensemble (MME). For each ESM forcing, five 20-year downscaling experiments over 

the whole West African domain including Burkina Faso, as defined by Browne and Sylla 

(2012), were completed: one historical forced by observed natural and anthropogenic 

atmospheric composition (2001–2018) and four future (2041–2060 and 2080–2099) under two 

Representative Concentration Pathway (namely, RCP4.5 and RCP8.5; Moss et al. 2010; Van 

Vuuren et al. 2011) GHG forcing scenarios from the IPCC. These two periods have been 

choosen thanks to the AR5 IPCC (2014) recommendations for hydroclimatic changes 

assessment and are referred as near future (NF) and far future (FF) as in Sylla et al. (2018) – 

keeping in mind that changes in different GHGs in all the RCP scenarios start from the 2040s. 

RCP4.5 emission scenario represents a medium-level GHG concentration forcing scenario 

(Thomson et al. 2011), while RCP8.5 is a high forcing scenario (Riahi et al. 2011). For each 

period and each forcing, multimodel ensemble means are performed. The historical simulations 
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performed in this thesis have been validated previously for the whole West Africa domain by 

Sylla et al. (2018). 

3.3 Methods 

3.3.1 Evaluation of ISBA land surface model  

In this thesis, the performance of ISBA LSM is investigated indirectly i.e. through 

assessing the quality of its atmospheric forcings (ERA5 and ERA-Interim here). This will 

ultimately (in the second specifc objective of the thesis) allow to evaluate the ability of LDAS-

Monde to provide improved land surface states. To this end, we will focus on precipitation and 

radiation variables, which are among the most important variables controlling the ISBA model 

quality as atmospheric forcings (Albergel et al. 2017).   

Firstly, both precipitation and incoming shortwave radiation (SWin) variables from 

ERA-Interim and ERA5 reanalyses will be assessed against in situ measurements. Then, ISBA 

is driven by both ERA5 and ERA-Interim reanalyses, with all atmospheric variables 

interpolated at a spatial resolution of 0.25° × 0.25° and 0.5° × 0.5°, respectively. In order to 

drive the model to the equilibrium state, the first year (2001) is spun-up 20 times for both the 

ERA5 and ERA-Interim configurations. It is the same framework as used in Albergel et al., 

(2017). The experiment covers the period of 2001–June 2018. 

A 10,000 samples bootstrapping is used to determine the 95% confidence interval of the 

median from the precipitation reanalyses. For the evaluation of both precipitation and SWin 

from ERA5 and ERA-Interim reanalyses, the 2010–2016 period and the year of 2017 are 

considered, respectively.  

Note that the same evaluation techniques are used for both the ISBA simulations (called 

openloop) and the estimates from LDAS-Monde (called analysis) against satellite datasets. 

3.3.2 Evaluation strategies  

3.3.2.1 Scores 

Performance metrics are used in order to assess the performance of the assimilation 

system to better improve the representation of LSVs. They are used as in the following: 

➢ (i) to evaluate ERA-Interim and ERA5 reanalyses against ground-based data. 

➢ (ii) to assess the quality and ability of LDAS-Monde to represent the land surface 
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conditions. For that, four metrics were used to compare the satellite products (sat) with 

the model simulations or analyses (mod): 

• Correlation Coefficient (CC) 

• Bias 

• Standard Deviation of Differences (SDD) 

• unbiased Root Mean Square Difference RMSD (ubRMSD) 

 

These quantities are defined as: 
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= −                                               (Equation 4.4)     

N represents the number of gridded observations, equal to the number of different 

gridded model estimates) used in the calculation of the scores at several dates. 

It is also worhtnoting that the ubRMSD means RMSD with biases being removed. 

4.3.2.2 Increments and sensitivity analysis of the assimilation 

Increments are defined by Equation (2) in Barbu et al. (2014). They correspond to the difference between 

the analyzed variables (i.e. after the assimilation of satellite observations) and the model prediction 

(prior the assimilation): 

        

                                            ∆𝑥 = K[𝑦0 − H(𝑥)]                                                   (Equation 4.5) 
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where x is the state vector (RZSM and LAI), y0 the observation vector (SSM and LAI), 

H is the linearized observation operator, and K is the Kalman gain. The y = H(x) term represents 

the model counterpart (SSM and LAI) of the observations.       

The increments on the state variables impact several key variables such as the carbon 

(photosynthesis through Gross Primary Production (GPP), and water (evapotranspiration (ET), 

drainage) fluxes. 

In order to assess the sensitivity of the the analysis to the observations, it is required to 

compute the Jacobian of the observation operator. It is calculated using finite differences 

obtained by perturbed model runs over 24-h assimilation windows. For a given grid point and 

vegetation patch, each control variable requires a perturbed model run obtained by initializing 

ISBA with the initial state perturbed for the selected control variable (0.1% typically, see 

Albergel et al., (2017). 

 

3.3.3 Climate change projections  

In order to address future water availability issues for Burkina Faso under climate 

change, we investigate to what extent anthropogenic climate change modifies the 

hydroclimatology of the country. This will be done using signal change method (future – 

present). Specifically, we examine how different RCP forcings impact evapotranspiration, 

atmospheric water demand, surface runoff, and ultimately, the aridity of the region for the near 

future (2041–2060) and by the end of the twenty first century (2080–2099). The atmospheric 

water demand is calculated as potential evapotranspiration (PE) using the method developed by 

Hamon (1963) through this formula: 

                                                           PE = 715.5Ω
e∗(Tm)

(Tm+273.2)
                              (Equation 4.6) 

 

where Ω is daylength (fraction of day), Tm is the mean monthly temperature (°C).  

e∗(Tm)  is the saturation vapor pressure (kPa) at the temperature T(°C) and is given by: 

                                        e∗(Tm) = 0.611 ∗ ln
17.67/Tm

(Tm+243.5)
                            (Equation 4.7) 

The aridity index used in this thesis is based on the one devised in Thornthwaite and 

Mather (1955) and modified by Willmott and Feddema (1992). The aridity index (Im) is 

described as follows: 

                                                        Im =
P

PE
− 1 for P <  PE                                (Equation 4.8) 
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                                                        Im = 1 −
PE

P
 for P > PE                               (Equation 4.9) 

 

                                                              Im = 0 for P = PE                                 (Equation 4.10) 

 

where P is the total annual precipitation and PE is the total annual potential 

evapotranspiration. The Im values range from −1 to +1 (see Table 3.1), where a value of 0 

indicates that the annual moisture supply (P) is equal to the annual moisture demand (PE). 

Table 3.1: Description of moisture index and the corresponding aridity types from Feddema 

(2005). 

Aridity Classification  

Aridity Type Moisture Index 

Saturated 0.66 – 1.00 

Wet 0.33 – 0.66  

Moist 0.00 – 0.33  

Dry -0.33 – 0.00  

Semi-arid -0.66 – -0.33  

Arid -1.00 – -0.66 

3.3.4. Conclusion of the chapter 

This chapter presented the different datasets in this thesis: the in-situ data, the remote sensing 

data of vegetation and soil moisture, the atmospheric reanalysis ERA-Interim and ERA5 as well 

as the LSM ISBA and the land data assimilation system LDAS-Monde implemented to improve 

the representation of LSVs. It is further highlighted the RCM simulations used to assess future 

climate change impacts on key water-related parameters. Methodological tools include the data 

assimilation technique used, evaluation stratetgies and finally hydroclimatic change signals 

assessment. All of these materials and methods are used throughout the next chapters.  
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Chapter 4. Evaluation of ISBA model and assessment of 

LDAS-Monde reanalysis*
 

*Present results published in Tall et al. (2019): 

Tall, M.; Albergel, C.; Bonan, B.; Zheng, Y.; Guichard, F.; Dramé, M.S.; Gaye, A.T.; 

Sintondji, L.O.; Hountondji, F.C.C.; Nikiema, P.M.; Calvet, J. Towards a Long-Term 

Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over 

Burkina Faso from 2001 to 2018. Remote Sens. 2019, 11, 735. 

 

The objective of this Chapter is to provide results largely based on the implementation 

of ISBA LSM and LDAS-Monde system over Burkina Faso. It first assesses the validation of 

the atmospheric reanalysis, which is considered as an indirect evaluation of ISBA model 

capability to yield past conditions of LSVs. Then, results about the performance of LDAS-

Monde are provided. More specifically, this meant to: 

• assess the quality of the forcing datasets i.e. ERA5 and ERA-Interim reanalyses using 

in situ observations spanning over Burkina Faso; 

• set up ISBA model over Burkina Faso; 

• evaluate LDAS-Monde simulated LAI and soil moisture against their observed satellite 

products through the application of relevant statistical metrics; 

• and evaluate LDAS-Monde against independent datasets for fluxes like 

evapotranspiration and gross primary production. 

4.1. Validation of ISBA: Performance evaluation of the latest ECMWF 

atmospheric forcings 

4.1.1. ERA5 and ERA-Interim reanalyses validation 

• Precipitation 

In the preliminary tasks i.e. before running ISBA model, we assesssed the quality of 

ECMWF reanalysis (ERA5 and ERA-Interim) that are used to force the land data assimilation 

system. To that end, we used in situ data of precipitation and incoming solar radiation (Swin) as 

explained in Section 3.1 for the validation. 
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Statistical metrics for 2010–2016 daily precipitation from ERA5 and ERA-Interim 

compared to 134 gauge stations spanning all over Burkina Faso are presented in Table 4.1. The 

Median R, ubRMSD, bias, and RMSD values for the total monthly precipitation time series 

considered their 95% confidence level are 0.82 ± 0.009, 52.02 ± 1.390 mm/month, − 15.00 ± 

3.270 mm/month, and 56.15 ± 3.600 mm/month for ERA5, and 0.77 ± 0.010, 58.44 ± 1.420 

mm/month, − 19.85 ± 3.770 mm/month, and 63.89 ± 3.250 mm/month for ERA-Interim. These 

previous findings have indicated a better performance with ERA5 reanalysis in representing 

precipitation variability than ERA-Interim. ERA5 performs better than ERA-Interim for 84% 

of the precipitation gauging stations for R values, 89% for ubRMSD values, 83% for bias 

values, and 86% for RMSD values. Same conclusions have been illustrated by the maps in 

Figure 4.1, where triangle (circle) symbols indicate stations where ERA5 performs better 

(worse) than ERA-Interim in terms of R (Figure 4.1a) and ubRMSD (Figure 4.1b). In the two 

maps of Figure 4.1, triangle symbols dominate indicating that ERA5 precipitation reanalyses 

demonstrate a better quality i.e. are in better agreement with in situ observations than ERA-

Interim over Burkina Faso.  Overall, the better performance of ERA5 with regard to ERA-

Interim is likely due to an improved representation of convective precipitation in the tropical 

region (Bechtold, 2016) and to the larger number of assimilated data; it is also possibly related 

to its higher spatial resolution. 
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Table 4.1: Comparison of precipitation (P) and incoming solar radiation (SWin) forcing with 

in situ observations for ERA5 and ERA-Interim over the period of 2010–2016 (based on 

monthly sum). Scores are given for significant correlations with p-values < 0.05.   

. 

Median R1, 95 % 

confidence interval2 

(% of stations for 

which this 

configuration is the 

best) 

 

Median ubRMSD1      

 on precipitation 

time series (in 

mm/month) and 

incoming solar 

radiation (in W/m2), 

95 % confidence 

interval2 (% of 

stations for which 

this configuration is 

the best) 

Median Bias1 on 

precipitation time 

series (in mm/month) 

and incoming solar 

radiation (in W/m2), 

95% confidence 

interval2 (% of 

stations for which this 

configuration is 

better) 

Median RMSD1 on 

precipitation time 

series (in mm/month) 

and incoming solar 

radiation (in W/m2), 

95% confidence 

interval2 (% of stations 

for which this 

configuration is better) 

ERA5  

(P) 
0.82 ± 0.009 (84 %) 52.02 ± 1.39 (89 %) -15.00 ± 3.27 (83%) 56.15 ± 3.60 (86%) 

ERA-Interim 

(P) 
0.77 ± 0.010 (16 %) 58.44 ± 1.42 (11 %) -19.85 ± 3.77 (17%) 63.89 ± 3.25 (14%) 

ERA5 

(SWin) 
0.59 ± 0.07 (100%) 36.23 ± 6.48 (100%) 19.40 ± 32.43 (100%) 42.24 ± 21.76 (100%) 

ERAI 

(SWin) 
0.46 ± 0.15 (0%) 41.03 ± 4.22 (0%) 28.12 ± 29.80 (0%) 50.72 ± 18.63 (0%) 

1Only for stations presenting significant R values on precipitation time series (p-value < 0.05): 

134 stations; sample bootstrapping. 

 

 

Figure 4.1: Maps of correlation (R) on precipitation time series (a) and ubRMSD (mm/month) 

on precipitation time of series (b) between in precipitation situ measurements and both ERA-

Interim and ERA5. For each station presenting significant R (p-value < 0.05), the simulation 

that presents the better R values is presented. Triangle symbols indicate when ERA5 presents 

the best value and circles when it is ERA-interim. 
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• Incoming solar radiation validation 

 

The statistical scores for the 2017 daily mean surface SWin from ERA5 and ERA-

Interim with respect to four stations (see Figure 4.2) are shown in Table 4.1. Median R, 

ubRMSD, bias, and RMSD values along with their 95% confidence interval are 0.59 ± 0.070, 

36.23 ± 6.480 W/ m2, 19.40 ± 32.430 W/m2, and 42.24 ± 21.760 W/m2 for ERA5, and 0.46 ± 

0.150, 41.03 ± 4.220 W/m2, 28.12 ± 29.800 W/m2, and 50.72 ± 18.630 W/m2 for ERA-Interim. 

It is highlighted in Figure 4.2 maps of R and ubRMSD values between ERA5 daily mean 

surface SWin and in situ measurements at four stations (Figure 4.2a,b) as well as their 

differences against R and ubRMSD values from ERA-Interim (Figure 4.2c,d) over 2017. We 

can clearly observe from Figure 4.2 higher correlations and lower ubRMSD values for ERA5 

with regard to ERA-Interim for the considered four stations. This is consistent with the observed 

positive correlation differences (ERA5—ERA-Interim, Figure 4.2c) and negative ubRMSD 

differences (ERA5—ERA-Interim, Figure 4.2). 

Figure 4.3 presents the 2017 time series of the daily SWin for ERA-Interim (blue), 

ERA5 (green), and the in situ observations (red) for Bobo (Figure 4.3a; 11.16°N, 4.30°W) and 

Dori (Figure 4.3b; 14.03°N, 0.03°W) stations belonging to the SG and SS zones, respectively. 

At these subtropical sites, the temporal structure of the annual cycle of SWin is strongly shaped 

by the top-of-the atmosphere incoming radiation, which drives the two well defined maxima of 

SWin (Guichard et al., 2009; Slingo et al., 2009). At Bobo, they occur in April and October 

while further North in Dori, the second maximum is less pronounced. Both reanalyses broadly 

capture these features, even though they tend to overestimate SWin (in particular during the 

monsoon, when clouds induce sharp drops which can reach more than 100 W/m2)—a similar 

bias also noted by Agustí‐Panareda et al., (2010) at the relatively close Sahelian site of Niamey. 

However, this bias is slightly reduced in ERA5. This implies that ERA5 performs better in 

representing SWin variations than ERA-Interim over Burkina Faso. This better performance of 

ERA5 can also be probably linked to the implementation of an improved radiation scheme (see 

Hogan and Bozzo, 2018 for more details). 
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Figure 4.2: Maps of correlation R (a) and ubRMSD (b) between incoming solar radiation 

time series from ERA5 and in situ measurements. (c,d) represent the difference between ERA5 

and ERA-Interim in correlation and ubRMSD for 2017, respectively. For each station 

presenting significant R (p values < 0.05), the simulation that presents the better R values is 

represented. 
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Figure 4.3: Incoming solar radiation temporal evolution for ERA-Interim, ERA5, and in situ 

measurements for (a) Dori and (b) Bobo stations for 2017. 

4.2. LDAS-Monde performance evaluation: 

In order to obtain the land surface analysis, satellite derived observations are combined 

with the model simulations through the above-mentioned data assimilation technique. In doing 

that, the resulting analysis is expected to be closer to the assimilated observations (LAI and 

SSM) than the open-loop (i.e., model with no assimilation). 

4.2.1 LDAS-Monde performance evaluation:  

• Results for LAI  

From the joint assimilation of LAI and SSM, a largest impact is observed for LAI. 

Figure 4.4 shows maps of the monthly average values of precipitation from ERA5 as well as 
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LAI from the LDAS-ERA5 openloop, the observations, LDAS-ERA5 analysis, and the 

difference between the analysis and the openloop. Observations indicate a sharp jump of LAI 

in April, very likely in response to the increase of soil moisture availability due to the start of 

the rainy season. However, an increase in LAI is also observed earlier in the SG region 

(southern part of the domain) from February to May; i.e., before the first rains. Interestingly, 

this peculiar behaviour would be consistent with findings from in situ studies from Shackleton 

et al. 1999; Seghieri et al. 2009; Awessou et al. 2017; which point to some tree species that put 

on leaves before the first rains of the season. This functioning does not appear to be linked to 

soil moisture (Peugeot, C.;, 2018). It could involve rises of the air temperature or humidity, 

though the precise mechanisms at play are still unknown. In any case, this process is not 

represented in the ISBA LSM, leading to a temporal shift of two to three months in the leaf 

onset and an underestimation of the observed LAI. 
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Figure 4.4: Seasonal average (from January to June) maps of precipitation [kg·m-2·d-1] and 

LAI [m2·m-2] over January 2001 to June 2018. From left to right: precipitation, LAI model, 

LAI analysis, LAI analysis-model difference. The latter column shows the impact of 

assimilating LAI and SWI on the simulated LAI. LDAS-ERA5 configuration is used. 

Figure 4.4 also shows little impact of the assimilation on the estimated LAI where 

observations are below 0.4 m2·m−2. This is due to a limitation of the ISBA LSM. As mentioned 

in section 3.2.2 of chapter 3, a minimum LAI threshold is prescribed to 0.3 m2·m−2 for every 

vegetation type (except coniferous forests) in ISBA. To satisfy that threshold, we force the 

SEKF to reset every LAI estimate below 0.3 m2·m−2 to that value, thus limiting the impact of 

assimilation. 
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Figure 4.5: Seasonal average (from July to December) maps of precipitation [kg·m-2·d-1] and 

LAI [m2·m-2] over January 2001 to June 2018. From left to right: precipitation, LAI model, 

LAI analysis, LAI analysis-model difference. The latter column shows the impact of 

assimilating LAI and SWI on the simulated LAI. LDAS-ERA5 configuration is used. 

The analysis is efficient at compensating for these two model caveats, as shown in 

Figure 4.4 and Figure 4.5. This is also clear in Figure 4.6, which shows the LDAS-ERA5 

configuration LAI monthly mean time series averaged values over the whole domain for 

January 2001 to June 2018. Observations indicate interannual fluctuations in the yearly 

maximum of LAI, with, for instance, higher values in 2003, 2010, and 2012 (see Figure A.1 

and A.2 in Annexes) and lower values (see Figure A.1, A.2 and A.3 in Annexes) in 2002, 2011, 

and 2017 (consistent with Kergoat et al., 2017; Pierre et al., 2016). Beyond differences in the 

structure of their annual cycles, the model and the analysis both capture part of this interannual 

variability, which is quite interesting to note. 
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Figure 4.6: Monthly average values of LAI from 1 January 2001 to June 2018: model (blue 

line), satellite product (green circles), analysis (red line) in the LDAS-ERA5 configuration. 

The improved annual cycle of LAI provided by the analysis is associated with a higher 

correlation and a positive impact on the SDD, Bias, and RMSD scores over the study region in 

all months (as seen on Figure 4.7; Table 4.2). It is also visible that the analyses add skill to both 

configurations, LDAS-ERA5 and LDAS-ERAI, which indicates the healthy behavior from the 

land data assimilation system. 
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Table 4.2: LAI Seasonal scores (SDD; Correlation; bias; RMSD) for the model and the 

analysis over January 2001 to June 2018. 
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Figure 4.7: Seasonal (a) SDD (b) bias (c) RMSD and (d) correlation between LAI from either 

LDAS-ERA5 (solid lines) or LDAS-ERAI (dashed lines) model (blue) and analysis (red) and 

observed LAI over January 2001 to June 2018. 

 

Considering now the three climatic regions of Burkina Faso, it appears that the 

correlation between the analyzed and observed LAI is lower during the rainy season in the SG 

region while it is higher in the SS and SH regions (see analysis in Figure 4.8; Figure 4.9b for 

the LDAS-ERA5 configuration). 
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Figure 4.8: JJAS Seasonal correlation of LAI (model, analysis and their difference) over 

January 2001 to June 2018 for the LDAS-ERA5 configuration. 

This reduction of R values in the analysis during the rainy season in the SG region could 

be related to a decrease in the number of the observed LAI linked to cloud cover (see Table 

4.3). Overall, the assimilation corrects the model seasonal responses by increasing the LAI 

during the rainy season and decreasing (Figure 4.10) the LAI after the rainy season, especially 

in the Sudanian region (SS and SG regions). 
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Figure 4.9: Seasonal (a) RMSD and (b) correlation of LAI analysis when compared to the 

observations considering the three climatic regions (SH, SS, and SG) over January 2001 to 

June 2018 for the LDAS-ERA5 configuration. 

 

 

Figure 4.10: Seasonal values of LAI for the observations (green), the model (blue) and the 

analysis (red). 
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Table 4.3: Seasonal number of LAI values (N) from 1 January 2001 to 30 June 2018 for the 

LDAS-ERA5 configuration. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  

Burkina 

Faso 
59724 59723 59724 59715 58914 53840 48140 48006 46022 54265 56406 56406  

SH 18684 18683 18684 18679 18674 18678 17638 17644 17646 17646 17646 17646  

SS 19440 19440 19440 19440 19440 19440 18334 18357 18319 18360 18360 18360  

SD 21600 21600 21600 21596 20800 15722 12168 12005 10057 18259 20400 20400  

 

 

Figure 4.11: Averaged analysis increments for January 2001 to June 2018. Four control 

variables are illustrated: (a) leaf area index and soil moisture in (b) the second (WG2, 1–4 

cm), (c) fourth (WG4, 10–20 cm), and (d) sixth (WG6, 40–60 cm) layer of soil for the LDAS-

ERA5 configuration. 

• Results for soil Moisture  

Comparatively to the assimilation impact on LAI, simulated SSM present lower 

improvements after assimilation. As mentioned above, the impact of assimilation on SSM is 

relatively weaker than on LAI. In fact, the assimilation does not appear to importantly impact 

the openloop (see seasonal cycle of SSM for the model and the LDAS-ERA5; Figure 4.12). 
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Figure 4.12: Seasonal values of SSM for the CGLS observations (green), the model (blue) 

and the LDAS-ERA5 analysis (red). 

This has a consequence on statistical metrics, for instance, in Figure 4.13a, which shows 

the correlation values between SSM from the openloop and the analysis (for both LDAS-ERA5 

and LDAS-ERAI configurations) and the SSM estimates from CGLS. Note that the seasonality 

effect has been removed through the use of the anomaly time series in order to assess the 

shorter-term variability of soil moisture. Figure 4.13a indicates a positive impact of the 

assimilation especially from January to May and from October to December regarding the 

model, emphasizing the improvement in SSM values. The impact of the assimilation on the 

representation of the shorter-term soil moisture variability is further presented using maps of 

the anomaly correlations between soil moisture before and after assimilation against ASCAT 

SSM estimates (Figure 4.13b,c); as well as using their correlation differences (Figure 4.13d) 

for the LDAS-ERA5 configuration. It is evident from Figure 4.13c that the analysis improves 

soil moisture simulations (see Table 4.4) over the whole domain with a more pronounced 

impact over the Sudanian region, i.e., SH and SG (Figure 4.13c). 
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Table 4.4: SSM Seasonal scores (Bias, Correlation, RMSD, SDD) for the model and the 

analysis over January 2001 to June 2018. 

 

 

 

 

 

 

 

  

 

 

 

 

Looking at the correlation differences based on the anomaly time series (Figure 4.13d), 

it is evident that positive values dominate, especially in the SH and SS regions, along with a 

rather neutral effect in the southern part of the domain. 
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Figure 4.13: Seasonal correlations for (a) anomaly time series between SSM estimates from 

the CGLS project and SSM from the second layer of soil of ISBA LSM (in blue) and the 

assimilation (in red) over the period of 2007–06/2018 for both the LDAS-ERA5 and LDAS-

ERAI configurations. (b,c) Maps of the anomaly correlation between SSM of the model, the 

analysis, and the SSM estimates from CGLS, respectively, (d) map of the correlation 

differences. (a–c) are for the LDAS-ERA5 configuration. 

4.2.3. LDAS-Monde Impact 

• Model sensitivity to the observations 

Jacobian operators are used to assess model sensitivity to the observations used. In fact, 

Jacobians are governed by the physics of the model and their examination is crucial to 

understand the data assimilation system performances (Albergel et al., 2017; Barbu et al., 2011; 

Fairbairn et al., 2017; Rüdiger, C., Albergel, C., Mahfouf, J.-F., Calvet, J.-C., and Walker, J. 

P., 2010). Mean Jacobians values over January 2010 to June 2018 for the whole domain of 

Burkina-Faso are presented in Table 4.5. 
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Table 4.5: Mean Jacobians values for the eight control variables considered in this study over 

the whole spatial domain for January 2001 to June 2018. 

Jan. 2001-

Jun. 2018 

𝜕𝑆𝑆𝑀

𝜕𝐿𝐴𝐼
 

 

𝜕𝑆𝑆𝑀

𝜕𝑤2
 

1-4 cm 

𝜕𝑆𝑆𝑀

𝜕𝑤3
 

4-10 cm 

𝜕𝑆𝑆𝑀

𝜕𝑤4
 

10-20 cm 

𝜕𝑆𝑆𝑀

𝜕𝑤5
 

20-40 cm 

𝜕𝑆𝑆𝑀

𝜕𝑤6
 

40-60 cm 

𝜕𝑆𝑆𝑀

𝜕𝑤7
 

60-80 cm 

𝜕𝑆𝑆𝑀

𝜕𝑤8
 

80-100 cm 

Mean -0.0006 0.5372 0.2033 0.0818 0.0441 0.0142 0.0049 0.0020 

 

𝜕𝐿𝐴𝐼

𝜕𝐿𝐴𝐼
 

 

𝜕𝐿𝐴𝐼

𝜕𝑤2
 

1-4 cm 

𝜕𝐿𝐴𝐼

𝜕𝑤3
 

4-10 cm 

𝜕𝐿𝐴𝐼

𝜕𝑤4
 

10-20 cm 

𝜕𝐿𝐴𝐼

𝜕𝑤5
 

20-40 cm 

𝜕𝐿𝐴𝐼

𝜕𝑤6
 

40-60 cm 

𝜕𝐿𝐴𝐼

𝜕𝑤7
 

60-80 cm 

𝜕𝐿𝐴𝐼

𝜕𝑤8
 

80-100 cm 

Mean 0.2578 0.0134 0.0223 0.0432 0.0911 0.0522 0.0318 0.0188 

 

Table 4.5 top row represents the impact of perturbating individually each control 

variables of LDAS-Monde (LAI, soil moisture from layers 2 to 8), by a (positive) small amount 

at the beginning of an assimilation window, on the model equivalent of SSM at the end of the 

assimilation window (i.e. 24 hours later). The model equivalent of SSM being the second layer 

of soil (𝑤2 between 1 and 4 cm depth), it is expected that the sensitivity of SSM to changes in 

soil moisture of that layer (
𝜕𝑆𝑆𝑀

𝜕𝑤2
) will be higher compared to those of the other layers of soil 

(
𝜕𝑆𝑆𝑀

𝜕𝑤3
 to 

𝜕𝑆𝑆𝑀

𝜕𝑤8
). As seen on Table 4.5, the mean Jacobian value is clearly higher for 𝑤2 than for 

any other layers. The model sensitivity to SSM decreases with depth suggesting that the 

assimilation of SSM will be more effective in modifying soil moisture from the first layers than 

the deeper layers. Over Burkina Faso, mean Jacobian values with respect to SSM observations 

(Table 4.5, top rows) range from 0.5372 to 0.0020 for layers 𝑤2 to 𝑤8, respectively and is –

0.0006 for LAI (
𝜕𝑆𝑆𝑀

𝜕𝐿𝐴𝐼
). This negative value indicates that a small positive increments of LAI 

will generally lead to a decrease of SSM (𝑤2). 

Table 4.5, bottom row, show the same for LAI: sensitivity of LAI to changes in LAI 

(
𝜕𝐿𝐴𝐼

𝜕𝐿𝐴𝐼
) and in soil moisture (

𝜕𝐿𝐴𝐼

𝜕𝑤2
 to 

𝜕𝐿𝐴𝐼

𝜕𝑤8
), from left to right, respectively. Sensitivity of LAI and 

in soil moisture suggests that control variables related to soil moisture will also be impacted by 

the assimilation of LAI. Table 4.5 also illustrates that the assimilation of LAI will be more 

effective in modifying soil moisture from layers 4 to 6 than from the surface layers. 
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Figure 4.14 illustrates the seasonal cycles of the Jacobians averaged over January 2001 

to June 2018. For sake of clarity, only 
𝜕𝐿𝐴𝐼

𝜕𝐿𝐴𝐼
, 

𝜕𝑆𝑆𝑀

𝜕𝑤2
, 

𝜕𝑆𝑆𝑀

𝜕𝑤4
, 

𝜕𝑆𝑆𝑀

𝜕𝑤6
 and 

𝜕𝑆𝑆𝑀

𝜕𝑤8
 are presented. Looking 

at the SSM Jacobians, the depth impact already highlighted by Table 4.5 is visible (i.e, less 

sensitivity to surface soil moisture at deeper layers than at upper layers). From Figure 4.14, a 

seasonal impact is also visible, 
𝜕𝑆𝑆𝑀

𝜕𝑤2
 are higher in winter months than in summer months, 

suggesting that LDAS-Monde will be more efficient assimilating SSM during winter months. 

Similarly, from 
𝜕𝐿𝐴𝐼

𝜕𝐿𝐴𝐼
 one may notice a dual seasonal cycle, LDAS-Monde will be more efficient 

assimilating LAI during April to June, October to November. 

 

Figure 4.14: Seasonal evolution of LDAS-ERA5 Jacobians averaged over January 2001 to 

June 2018. 

It is worth mentioning that the configuration where ERA5 is used to force LDAS-Monde 

was considered to present the Jacobians evaluation. 

4.2.4 LDAS-Monde performance: evaluation using Independent datasets 

For evapotranspiration and Gross Primary Production (GPP), seasonal scores (RMSD 

and R values in Figure 4.15) are computed for the model and for the analysis in both the LDAS-

ERA5 and LDAS-ERAI configurations. Only vegetated grid points (>90%) are considered. 

After the joint assimilation of SSM and LAI, a small positive impact on evapotranspiration is 

observed for the correlations, as found in Barbu et al., (2011), and it is interesting to note a 

small degradation of the RMSD values in the second part of the year (August to December). 
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However, there is a clear improvement in GPP in terms of the RMSD and R scores, especially 

from January to August (Figure 4.15c,d). While the impact on R values of the analysis is equally 

distributed over the domain for both evapotranspiration and GPP, a larger (positive) impact on 

RMSD values is found on the southern part of the domain (not shown). This is in agreement 

with the analysis impact on LAI described above. LDAS-ERA5 generally performs better than 

LDAS-ERAI for both the openloop and the analysis. It is particularly true when considering 

RMSD values for evapotranspiration (Figure 4.15a). 

 

Figure 4.15: Seasonal evapotranspiration (a,b) and gross primary production (GPP) (c,d) 

scores when compared to the observations over January 2001 to June 2018. 

Figure 4.15a indicates, however, the degradation of the evapotranspitation estimation 

by LDAS-ERA5 and LDAS-ERAI when compared to the GLEAM dataset. It is worth noting 

that the GLEAM dataset is not a direct remotely sensed observation, but rather a remote 

sensing-based evaporation retrieved model with its own uncertainties. For instance, Pagán et 

al., (2019) have recently assessed the potential of satellite observations of solar-induced 

chlorophyll fluorescence (SIF), normalized by photosynthetically-active radiation (PAR), to 
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diagnose the ratio of transpiration to potential evaporation (“transpiration efficiency”) from 

several state-of-the-art models, including SURFEX and GLEAM. They obtained better results 

with SURFEX than with GLEAM, in particular during the vegetation decaying phase. 

Looking at the seasonal time series of the analysis increments (Figure 4.16 for the 

LDAS-ERA5 configuration), it is very interesting to notice that the degradation from the 

analysis over the open-loop (from August in both the LDAS-ERA5 and LDAS-ERAI 

configuration) corresponds to a sign inversion in the LAI increments (from positive to negative) 

as well as a sharp positive increase in soil moisture increments (analysis increments of soil 

moisture from the second (WG2) and fourth (WG4) layer of soil are presented). This situation 

in the vegetation decaying period seems conflictual and may suggest a lack of consistency 

between the two observation types (LAI and SSM), leading to the observed degradation in 

RMSD values. 

 

Figure 4.16: Seasonal evolution of LDAS-ERA5 analysis increments averaged over January 

2001 to June 2018 for three control variables: LAI, and soil moisture from the second (WG2) 

and fourth (WG4) layer of soil. 

For SIF, seasonal scores (R values in Figure 4.17) comparing the observed SIF and 

simulated GPP for vegetated grid points are computed for model and analysis estimates in both 

the LDAS-ERA5 and LDAS-ERAI configurations. A positive impact of data assimilation on R 

can be seen from January to August with an averaged improvement of 0.1 on R for both 

configurations. For the rest of the year, the impact is rather neutral. Using ERA5 or ERA-

Interim as atmospheric forcing does not have much influence on R. This was also the case for 
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FLUXCOM GPP in Figure 4.15. This is due to a diminished impact of atmospheric forcing on 

the modelled GPP. The positive impact is of the same scale for the three agroclimatic areas 

covering Burkina Faso (not shown). This is consistent with what was observed for correlations 

between simulated GPP and the FLUXCOM dataset. 

 

Figure 4.17: Seasonal correlation between GOME-2 sun-induced fluorescence and simulated 

GPP covering the period of 2010–2016. 

4.3 Partial conclusion 

This chapter focused on the evaluation of ISBA and the capacity of LDAS-Monde to 

provide an improved reanalysis of historical land surface conditions through the joint 

assimilation of satellite-derived soil moisture and vegetation products over Burkina Faso in 

western Africa. The ISBA LDAS-Monde offline system was forced by both ERA5 new 

atmospheric reanalysis and ERA-Interim former atmospheric reanalysis, leading to a 0.25° × 

0.25° and a 0.5° × 0.5° spatial resolution reanalyses. The quality of ERA5 with respect to the 

former ERA-Interim reanalysis was evaluated using (i) in situ measurements of precipitation 

and incoming solar radiation (Swin) as well as (ii) the output of LDAS-Monde. The comparison 

of the two atmospheric forcing yields two key results: ERA5 provides substantial improvements 

compared to ERA-interim for precipitation (over 2010–2016), and also for the SWin variable 

(over 2017). Using ERA5 and ERA-Interim to force the ISBA LSM (open-loop) provides a 

good model first guess, e.g., on the LAI variable with an advantage to ERA5. However, 

comparing the open-loop with the observed LAI has highlighted the missing processes in the 

representation of vegetation phenology. The assimilation is able to improve the simulation of 

both SSM and LAI when using either ERA5 or ERA-Interim, showing that the analyses add 
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skill to both configurations and indicating the healthy behavior of LDAS-Monde. From the 

analysis, important improvements in the representation of the LAI, SSM, and GPP variables 

were obtained with better scores for the analysis than for the model equivalent (open-loop 

simulation). In particular, the LAI analysis is very good at compensating for caveats, such as 

the model’s failure in capturing leaf onset prior to the first rains for particular plant species. 
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Chapter 5: Projected changes in the hydroclimatology of 

 Burkina Faso 

Burkina Faso is among the sahelian countries, which are well known to be experiencing 

high water stress and scarcity along with exponential population growth and facing recurrent 

and localized droughts and increased food shortage (Jenkins et al. 2005). While it is certain that 

climate change resulting from anthropogenic greenhouse gas (GHG) emissions will occur in 

Western Sahel and Burkina Faso via an increase in surface temperature and drought conditions 

(Sylla et al. 2010, 2015a; Diallo et al. 2012, 2016; Mariotti et al. 2014; Mbaye et al. 2015), 

substantial uncertainty regarding the direction and magnitude on water resources and 

agriculture remains.  

In order to investigate the impact of different anthropogenic climate changes on the 

hydroclimatology of Burkina Faso, we thus make use of a multimodel ensemble generated from 

the ICTP Regional Climate Model (RegCM4) simulations. Regional climate models (RCMs) 

are proven to be particularly valuable in the representation of fine-scale forcing and land surface 

heterogeneity such as complex topography, coastlines, and land surface variations (Paeth et al. 

2005; Rummukainen 2010; Diallo et al. 2014; Sylla et al. 2015b, Torma et al.2015), which are 

unresolved by the low-resolution earth system models (ESMs) (Sylla et al. 2015a; Diallo et al. 

2015). We focus, in particular, on the changes of water-related parameters such as precipitation, 

evapotranspiration, soil moisture, surface runoff, and aridity to finally discuss potential future 

water availability and agricultural activities in Burkina Faso. 

5.1 Hydroclimatic changes 

5.1.1 Temperature 

Projected temperature changes over Burkina Faso for the near future and the late twenty-

first century for both RCP4.5 and RCP8.5 are presented in Figure 5.1. For the near future 

(Figure 5.1a and Figure 5.1b), the different anthropogenic GHG forcings lead to temperature 

changes ranging between 1 and 2.5 °C. The magnitudes of the changes are almost uniform for 

the whole study domain except in the eastern part where the highest values are found in both 

RCPs and over the Northwestern regions close to Southern Mali where RCP8.5 shows values 

of around 2.5 °C. The hottest temperatures are however, projected by the end of the twenty-first 

century where the GHG forcings are maximum. In fact, RCP4.5 results in a temperature rise of 
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2.5 °C along the southern part of Burkina Faso and 3 °C in the interior of the country while 

RCP8.5 leads to a substantial increasce in temperature of about 4 to 6.5 °C following a south-

north gradient with maximum changes in the north. Therefore, the northern regions of Burkina 

Faso appear to be more sensitive to global warming. These temperature changes will 

substantially affect the future atmospheric water demand for the region. 

 

 

Figure 5.1: Changes (related to the reference period) in annual mean temperature (in °C) for 

the near future (2041–2060, upper panels) and the far future (2080–2099, lower panels) and 

for both RCP4.5 (left panels) and RCP8.5 (right panels). 

5.1.2 Precipitation 

Figure 5.2 shows the precipitation changes for the two periods and for both scenarios. 

The near-future changes reveal an increase ranging between 10 and 50 % in precipitation in 

most regions of Burkina Faso. The two scenarios almost exhibit the same signal changes, with 

higher increases in southern part when considering the scenario RCP4.5. The end of the twenty-

first century, in turn, experiences precipitation decreases for both scenarios. While in the 
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RCP4.5, precipitation decrease is quite uniform (more than 20 %) in central and northern 

regions and smallest (less than 10 %) in the southeast region and with some intermediate 

magnitudes (between 5 and 10 %) in the central regions, RCP8.5 yields more dryness (up 30 

%) generalized all over the western country as a result of stronger long-term GHG forcing. It is 

thus clear that climate change causes increased precipitation in the near future and decreases in 

the late twenty-first century, indicating that during the 2050s, the natural variability is 

predominant while in the 2090s when the GHG forcing is highest, anthropogenic climate 

change prevails. 

 

Figure 5.2: Changes (related to the reference period) in annual mean precipitation (in %) for 

the near future (2041–2060, upper panels) and the far future (2080–2099, lower panels) and 

for both RCP4.5 (left panels) and RCP8.5 (right panels). 

5.1.4 Soil Moisture 

Mean precipitation changes influence in general those from the soil moisture (Figure 

5.3). In fact, for the near future and both RCPs (Figure 5.3a and Figure 5.3b), soil moisture has 
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a tendency to increase in south-central and eastern regions of Burkina Faso, where projected 

precipitations are more important, with rather neutral trend in the western country where little 

increases or dryness occur. For the late twenty-first century (Figure 5.3c and Figure 5.3d), as 

precipitation decreases, soil moisture also decreases up to maxima of 25 % in the western region 

of Burkina Faso for RCP4.5. In RCP8.5, as for precipitation, these decreases are more extensive 

and cover almost the whole Burkina Faso. It is worth mentioning that all simulations use same 

land use map i.e. not considering the dynamics of vegetation from the historical to the future 

periods. Therefore, land use changes may affect soil moisture projections in contrasting ways. 

For example, El-khoury et al. (2015) found that land use changes might control the same water 

quantity/quality in the same direction as climate change over a Canadian river basin, while 

Wilson and Weng (2011) found that climate change would have a greater impact that land use 

changes in the Des Plaines River watershed, Chicago Metropolitan Area, Illinois.     

 

Figure 5.3: Changes (related to the reference period) in annual mean soil moisture (in %) for 

the near future (2041–2060, upper panels) and the far future (2080–2099, lower panels) and 

for both RCP4.5 (left panels) and RCP8.5 (right panels). 
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5.1.5 Evapotranspiration 

The changes in evapotranspiration (Figure 5.4) essentially follow those from the mean 

precipitation and soil moisture with more evapotranspiration during the near future and 

generalized decrease/increase via a south/north gradient in the late twenty-first century as a 

result of combined water availability (precipitation and soil moisture) and temperature 

increases. It should be noted that in the southern Burkina Faso and for both scenarios during 

the late twenty-first century (Figure 5.4c and Figure 5.4d) evapotranspiration tends to decrease 

probably because of the lesser projected temperatures in the southern Burkina Faso. In fact, soil 

moisture and surface temperature are among the two most important factors affecting 

evapotranspiration. Hence, for the late twenty-first century, these evapotranspiration changes 

are primarily the result of increased temperature over the study domain. 

 

 

Figure 5.4: Changes (related to the reference period) in annual mean evapotranspiration 

(in %) for the near future (2041–2060, upper panels) and the far future (2080–2099, lower 

panels) and for both RCP4.5 (left panels) and RCP8.5 (right panels). 
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5.1.6 Surface runoff 

The surface runoff (Figure 5.5) exhibits different patterns of changes than do 

precipitation and soil moisture. In fact, both increases and decreases of surface runoff are 

projected over short distances regardless of whether the region receives more or less 

precipitation in future climate. This suggests that precipitation in future climate is subject to 

stronger spatial gradients making it difficult to follow the mean precipitation changes. This also 

indicates that the heavy precipitation may be more intense under future climate change over 

Burkina Faso. It should be emphasized that in the near future, the northern and southern parts 

of Burkina Faso almost undergo an increase of surface runoff while a decrease is projected for 

the eastern region (more obvious in the RCP4.5 scenario). In the late twenty-first century, the 

central-western part experiences substantial decreases in surface runoff, tending thus, in some 

extent, to depress irrigated agricultural activities. However, in the near future, the southern part 

of the study domain could probably favor irrigated agriculture as the surface runoff increases. 

However, other important factors such as topography and land use changes may play also 

decisive roles for agricultural activites. 
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Figure 5.5: Changes (future minus reference period) in annual mean surface runoff (in %) for 

the near future (2041–2060, upper panels) and the far future (2080–2099, lower panels) and 

for both RCP4.5 (left panels) and RCP8.5 (right panels). 

5.2 Future aridity conditions 

To examine how these combined changes will affect the moisture conditions of Burkina 

Faso, a multivariate approach has been used, for instance the revised Thornthwaite moisture 

classification, and derive an aridity index for the country following Feddema (2005). The aridity 

index is shown in Figure 5.6 for the historical, near future, and late twenty-first century and for 

both RCP4.5 and RCP8.5. The historical period shows that Burkina Faso is essentially a semi-

arid country (Figure 5.6a). For the near future, this semi-aridity is less extensive where some 

dry and, to a lesser extent, moist conditions emerge in the Southern regions. However, for the 

late twenty-first century and for both scenarios, the centre and northen regions of the country 

shift toward arid conditions. 



 

82 

 

 

Figure 5.6: Distribution of the aridity index for the historical (2001–2018, upper panel), the 

near future (2041–2060, middle panels), and the far future (2080–2099, lower panels) and for 

RCP4.5 (left panels) and RCP8.5 (right panels) 

5.3 Partial conclusion 

With regards to these results, it is clear that climate change will substantially affect the 

hydroclimatology of Burkina Faso during the near future toward a lesser surface water amount 

and a generalized decrease of water availability during the late twenty-first century (decrease 

of surface runoff and increase of evapotranspiration). Such changes will add more stress to 

irrigated agricultural activities over the country at a period where the crops need more water 

due to the increases in aridity (more pronounced in the North). Hence, reliable adaptation, water 
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management policies and mitigation measures. Important mitigation practices include land-use 

change and management, cropland management, reforestoration and wastewater treatement and 

the use of hydropower energy for surface waters and would allow to reduce the increases in 

GHGs.  
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Chapter 6: General conclusion, recommendations and 

perspectives 

6.1 Conclusions 

This thesis is devoted to assessing past and future hydroclimatic conditions by 

integrating land surface modelling, data assimilation and climate change over Burkina Faso. 

This is performed thanks mainly to the use of the CO₂-responsive version of ISBA, the global 

land data assimilation system LDAS-Monde and the last version of the regional climate model 

RegCM4. ISBA estimates have been indirectly validated through assessing the quality of its 

forcings (i.e. ERA5 and ERA-Interim), this determine generally the quality of LSVs simulated 

by the model. Then, reliable earth observation data such as SSM and LAI from the CGLS have 

been integrated into the land data assimilation system LDAS-Monde in order to produce 

improved land surface reanalysis. These land reanalyses are critical for climate science and 

hydrology as well as environmental monitoring and prediction, especially in data sparse area, 

like Burkina Faso.        

Prior to any assimilation experiment, atmospheric forcings which are used to tune up 

the land surface model ISBA have been evaluated. In fact, ERA5 and ERA-Interim reanalyses 

have been assessed with regard to ground-truth measurements of relevant calibration 

parameters such as precipitation and incoming radiation parameters. At the same time, ERA5’s 

quality with regard to the former reanalysis ERA-Interim was also highlighted. All of these 

tasks have been performed using stastical metrics. These scores have shown that both ERA5 

and ERA-Interim presented good performance in representing precipitation variability and solar 

radiation (with better agreement for precipitation). The better improvement for precipitation 

was likely linked with an improvement of its parametrization in tropical Africa. Therefore, it 

was concluded that ISBA LSM had the potential to produce good quality of land surface 

parameters such as LAI, SSM, evapotranspiration etc.; and hence, can be used as model 

estimates (open-loop) within a land data assimilation fraemework. 

The assimilation experiment design has been carried out by integrating satellite-derived 

soil moisture and vegetation products (SSM and LAI) into the ISBA model using a simplified 

Kalman Filter (SEKF). This configuration has led to long-term characterization and 

representation of surface hydroclimatic variables (soil moisture, evapotranspiration etc.); which 
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have been evaluated with regard to their observed counterparts as well as using relevant/proxy 

independent datasets.     

Overall, main results demonstrated a good quality of LDAS-Monde reanalysis to 

monitor land surface conditions at different time scales (monthly, yearly, seasonal etc.) over 

Burkina Faso with adequate range of uncertainties. Then, a comparative performance 

assessment has been addressed using the two previous atmospheric forcings ERA5 and ERA-

Interim driving the ISBA LSM (open-loop) i.e. LDAS-ERA5 and LDAS-ERAI. The two 

configurations have provided a good model first guess, for instance, on the LAI variable along 

with an asset utilizing ERA5. Nevertheless, the comparison done between the open-loop (ISBA 

without assimilation) and the observed LAI has highlighted the lacking processes in the 

representation of vegetation phenology. The assimilation was able to improve the simulation of 

both surface soil moisture and LAI when using either ERA5 or ERA-Interim. This pointed out 

that the assimilation add skill to both configurations and proved the healthy behaviour of 

LDAS-Monde system. Furthermore, important improvements in the representation of the LAI, 

SSM, and GPP variables were obtained with better scores for the analysis than for the model 

equivalent (open-loop simulation). In particular, the LAI analysis was very good at 

compensating for caveats, such as the model’s failure in capturing leaf onset prior to the first 

rains for particular plant species.   

We used an integrated assimilation platform to represent and monitor key LSVs relevant 

to hydrological cycle over Burkina Faso and evaluated the associated representation 

uncertainty, thus providing a range of possible estimates of LSVs (soil moisture, for instance) 

on a specific period of time and space. Importantly, the assimilation system used in this thesis 

can be coupled with a physically based hydrological model and has the advantage to 

accommodate to variations in time, climate and environment. Therefore, it can be used to 

address some water resources issues such as monitoring and forecasting of streamflow by 

updating input data over a catchment-scale or for larger areas. These types of information will 

help build reliable information regarding water resources management and planning especially 

over data-scarce regions as well as in the evaluation of current and future hydroclimatic changes 

towards the development of more appropriate adaptation measures and mitigation strategies to 

cope with global changes. Trustworthy information on water resources availability in data-

scarce areas like West Africa can also boost the development of irrigation. This is especially 

relevant in a future climate change context, where rain-fed agriculture being mostly threatened. 
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For these previous reasons, we developed an ensemble-based simulation from RegCM4 

model to investigate to what extent climate change will affect future water availability over 

Burkina Faso. This was done by assessing changes in hydroclimatic variables such as 

precipitation, soil moisture, evapotranspiration and surface runoff along with an assessment of 

future aridity conditions. 

The results indicated that the different GHG forcings produce different magnitudes of 

temperature changes ranging from 1 °C in the RCP4.5 and for the near future to 6.5 °C for 

RCP8.5 and for the late twenty-first century. The impact of such warming on the regional water 

demand is substantial. In addition, the mean precipitation change exhibits interesting features. 

In fact, mean precipitation in the near future shows a tendency to increase in both scenarios; 

however, for the late twenty-first century, drier conditions occur, with RCP8.5 projecting the 

highest decrease. This indicates that natural variability plays an important role when the GHG 

forcing is low (i.e., the near future). Evapotranspiration and soil moisture essentially follow 

changes of mean precipitation – along with other factors such as vegetation dynamics, which 

are not taken into account by most of the regional climate models, including RegCM4). 

However, for the surface runoff in the near future, the north and south parts of Burkina Faso 

almost undergo an increase of surface runoff while a decrease is projected for the eastern region 

(more important in the RCP4.5) and substantial decreases in the central-western part of Burkina 

Faso (for the late twenty-first century). Finally, an aridity index has been applied to the 

historical and future climatologies of precipitation and potential evapotranspiration. It is 

interesting to note that during the near future, climate change provides some extension of the 

dry areas in southern Burkina Faso at the expenses of semi-arid zones. However, in the late 

twenty-first century and under both RCP4.5 and RCP8.5 GHG forcings, almost the whole 

Burkina Faso, tends to shift toward a generalized arid climate (with less extension in the 

southern part, especially in the RCP4.5 scenario). 

From these results, it is evident that climate change will substantially affect the 

hydroclimatology of Burkina Faso during the near future toward a lesser surface water amount 

in the north Burkina Faso and a generalized decrease of water availability during the late 

twenty-first century (decrease of soil moisture and intensification of the aridity). Such changes 

will add more stress to irrigated agricultural activities over the country at a period of time where 

the crops need more water due to aridity intensification. 
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6.2 Perspectives and recommendations 

Available observations constitute a major pillar of any land surface modelling research 

and climate change assessment for water resources monitoring and management. It is therefore 

of high importance to use further data along with more sophisticated methods in order to 

improve model accuracy as well as reduce uncertainties. This appeals the use of state-of-the-

science land models, most recent data assimilation technics and regional climate models. Due 

to novelty approach engaged in this research, the perspectives and recommendations are 

basically oriented for hydroclimate research purposes. Therefore, the following points are 

suggested: 

6.2.1 Perspectives for further research investigations 

 In land surface modelling and data assimilation 

• The LAI representation could be enhanced even more using more efficient observations 

and assimilation systems. For example, one single LAI observation was used within a 

grid cell for all types of vegetation to perform the assimilation, making the Kalman gain 

and the increment disaggregation rely on the vegetation type as in Barbu et al., (2014). 

• This procedure could be improved by performing the assimilation using disaggregated 

values of LAI for each individual vegetation type. Such a LAI disaggregation method 

was recently proposed by Munier et al., (2018). Munier et al., (2018) produced 

disaggregated global LAI maps available every 10 days for each vegetation type 

available from ECOCLIMAP-II over 1999–2015. 

• Assimilating the disaggregated LAI could impact the analyzed LAI and other vegetation 

related variables, mainly evapotranspiration and GPP as emphasized in Munier et al., 

(2018). 

• Also, LDAS-Monde analyses for the SSM variable could be improved by implementing 

an observation operator for the ASCAT radar (backscatter coefficients), instead of 

assimilating a retrieved soil moisture product. This would allow a direct assimilation of 

level 1 data and the use of all the information contained in these observations (Lievens 

et al., 2016).  

In hydroclimatic change assessment 

• The use of statistical bias correction methods in historical RCM simulations: this will 

potentially reduce the uncertainties in future projections as highlighted by Mbaye et al. 
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2016 over Senegal River Basin. 

• Increasing the resolution of RCMs (e.g. towards ~ 12 Km) appears to provide 

substantially enhanced information on the magnitude and patterns of hydroclimatic 

changes. It will be further interesting to assess the new WASCAL high resolution 

simulations developed for West Africa.  

• The contribution of more simulations in building the multi-model ensemble of RCMs 

simultions: this will enhance the reliability of projections using information from 

several RCMs and therefore, reduce the associated uncertainties, as highlighted in 

Mbaye et al. 2019 over Senegal. 

• Despite its clear importance on climate changes, vegetation dynamics and/or land use 

changes are represented in only a few hydroclimatic simulations. Thus, a synchronously 

coupled regional hydro-climate-vegetation simulations would be of highly importance 

to investigate the land use changes feedback in futue hydroclimate changes on water 

resources over Burkina Faso. This will help address the uncertainty in model results 

related to future hydroclimatic conditions as in Yu et al. (2015). 

• The use of RegCM simulations based on the non-hydrostatic dynamical core could 

potentially provide an added-value in the predictions of hydroclimate variables over 

Burkin Faso.                   

• Considering the different sub-basins of Burkina Faso will allow assessing climate 

change on water resources through estimating a potential water availability considered 

as the ratio between the precipitation and the potential evapotranspiration. Also, it will 

be important to analyze each basins’s potential—for a better consideration of the water 

balance—to increase agricultural productivity through assessing changes in crop water 

deamand, irrigation water need, water availability, and the difference between water 

availability and irrigation water need, referred as basin irrigation potential as in Sylla et 

al. (2018).          

• Considering soil moisture assessment, the humidity values of the different soil layers 

have not been considered in this study. Hence, a regression equation must be established 

to take into account the contribution of the entire root zone, and therefore of the soil to 

evapotranspiration and ultimately to gross primary production 

• Using higher resolution dataset for the gross primary production would help better 

monitor the agricultural productivity, while considering the different soil heterogeneities 

in the assessment. 
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• Quantifying the hydrological water budget components for Burkina Faso would be also 

relevant, especially when considering the different sub-basins of the country, as 

highlighted previously.  

• For surface runoff projections, land use and land cover change contributions should be 

taken into account to estimate their impacts on water availability as well as agriculutre 

in future. 

• Information on projected hydroclimatology and drought conditions can help 

policymakers to develop strategies for the most vulnerable areas. For example, a shift 

from wet to semi-arid conditions may cause species migration and/or extinction along 

with increased water stress on managed and unmanaged ecosystems (Colwell et al. 

2008; Carr et al. 2014). Thus, the breeding of species more resilient to hotter and drier 

climates or the implementation of sustainable practices, such as climate-smart 

agriculture, would be required in order to mitigate the effects of climate change (Loarie 

et al. 2009; Campbell et al. 2014). 

• It is also paramount for the local authorities to develop some adaptation measures and 

mitigation strategies to cope with the new environmental conditions due to intensifying 

climate change over Burkina Faso. 

6.2.2 Recommandations to researchers 

The following recommendations are made for further research involving integrated 

hydroclimate modelling over Burkina Faso 

▪ Include the impacts of land use/cover changes on regional hydroclimatic changes in 

order to provide more reliable long-term reanalyses of surface states variables and 

robust hydroclimate information.     

▪ Extend this study to other regions and/or in the main river basins of West Africa.    

▪ Further application of integrated and multi-disciplinarity approaches in environmental 

assements in hydrolclimate research 

Overall, the results obtained and illustrated throughout this thesis have permited to 

confirm the hypothesis formulated in Chapter 1. Thus, pointing out the need of elaborating 

robust LSMs, data assimilation technics as well as reliable ensemble-based climate change 

projections and related impact/adaptation assessment studies for this highly vulnerable region 

of West Africa (Burkina Faso). In particular, increased resolution appears to provide 

substantially enhanced information on the magnitude and patterns of changes in the 
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hydroclimatology and drought patterns over the region, and this calls for a sustained use of 

regional climate models coupled with hydrological routines to enhance the reliability of 

hydrclimatic change projections over West Africa. 
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Annexe 1: List of figures   

A1.1: Annual average maps of LAI [m2·m−2] over January 2001 to June 2018. From left to 

right: LAI model, LAI analysis, LAI analysis-model difference. 
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A1.2: ctd. 
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A1.3: ctd. 
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A1.4: Annual average maps SSM [m3·m−3] over January 2001 to June 2018. From left to 

right: SSM model, SSM analysis, SSM analysis-model difference. 
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A1.5: ctd. 
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A1.6: Seasonnal correlation maps of LAI over January 2001 to June 2018. 
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A1.7: ctd. 
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A1.8: Climatological maps of SSM from ESACCI-COMBINED and Evapotranspiration from 

GLEAM along with their respective standard deviation over 2017-08/2019. 
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A1.10: (a), (b), (c) maps of SSM correlation for LDASMonde, ERA5Land FLDAS 

respectively; (d), (e), (f) differences in correlation between LDASMonde and ERA5Land, 

LDASMonde and FLDAS and FLDAS and ERA5Land, respectively. 

 
 



 

121 

 

A1.11: Seasonnal correlation of SSM and Evapotranspiration for LDASMonde, ERA5Land, 

ERA5 and FLDAS for West (a,d), East (b,e) and (c,f) South Africa. 

 

A1.12: Seasonnal correlation of Evapotranspiration for LDASMonde (with and without 

vegetation filtered), ERA5Land (with and without vegetation filtered) for West (a), East (b) and 

(c) South Africa. 

  

 



 

122 

 

Annexe 2: List of publications and conferences 

Publications 

Tall, M.; Albergel, C.; Bonan, B.; Zheng, Y.; Guichard, F.; Dramé, M.S.; Gaye, A.T.; Sintondji, 

L.O.; Hountondji, F.C.C.; Nikiema, P.M.; Calvet, J.-C. Towards a Long-Term 

Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over 

Burkina Faso from 2001 to 2018. Remote Sens. 2019, 11, 735. 

Koubodana, H.D., Adounkpe J., Tall, M., Amoussou, E., Mumtaz, M., Adounkpe, J., 

Atchonouglo, K. 2019b. Trend Analysis of Hydroclimatic Historical Data and Future 

Scenarios of Climate Extreme Indices over Mono River Basin in West Africa. Am. J. Rural 

Dev. 8, 37–52. https://doi.org/10.12691/ajrd-8-1-5  

Tall, M.; Albergel, C.; Sintondji, L.O.; Hountondji, Gaye A. T., Guichard Francoise. 

ERA5Land, FLDAS and ISBA representation of soil moisture and evapotranspiration 

over Sub-Saharan Africa: an assessment using satellite derived datasets (in prep). 

Tall, M.; Sintondji, L.O.; Hountondji F., Gaye A. T. Impact of anthropogenic climate change 

on the hydroclimatology of Burkina Faso by using an ensemble-based regional climate 

models. (in prep). 

 

Conferences 

(i) African Climate Risks Conference ACRC. 7-9 October 2019. Addis Ababa, 

Ethiopia (oral presentation). 

(ii) AMMA-CATCH 30 years Workshop 12-14 November 2018. Niamey, Niger (oral 

presentation). 

(iii) Ninth ICTP Workshop on the Theory and Use of Regional Climate Models, 28 May 

– 8 June 2018, Trieste, Italy (oral presentation). 

 

 

 

 

 

https://doi.org/10.12691/ajrd-8-1-5


 

123 

 

Candidate biography 

Mr Moustapha Tall is engaged in the West African Science Service Center on Climate Change and Adapted Land Use 

(WASCAL) Doctoral program for his doctoral thesis in Climate change and water resources at the Université of Abomey-

Calavi (UAC) in Bénin Republic since 2016. His research interests are climate change implications on water resources, extreme 

events such as droughts and floods, land surface modelling as well as data assimilation. Prior to his PhD studies, he completed 

a Master’s Degree in Meteorology at the Laboratory of Atmospheric and Ocean Physics at the Université Cheikh Anta Diop 

(UCAD) of Dakar in Senegal. Most of his research involves the use of stand-alone models, regional climate models coupled 

with hydrological routines to provide hydroclimatic information that are potentially relevant for future water resources planning 

as well as to cope with global changes. He is also an IPCC contributing author for the AR6 (Chapter 12: Climate change 

information for regional impact and for risk assessment).   

 

Abstract: This thesis aims to assess past and future hydroclimatic conditions over Burkina Faso using an integrated approach 

involving land surface modelling, data assimilation and climate change. To this end, high-resolution simulations from the CO2-

responsive versions of the Interactions between Soil, Biosphere, and Atmosphere (ISBA), the global Land Data Assimilation 

System (LDAS-Monde) and a multi-model ensemble based on the most recent version of the Regional climate Model 

(RegCM4) under two Representative Concentration Pathways (RCP4.5 and RCP8.5) are used. ISBA estimates are assessed 

through its forcings (ERA5 and ERA-Interim reanalyses) for precipitation and solar radiation variables. First, it is shown that 

both reanalyses present a good performance in representing precipitation variability and incoming solar radiation (with better 

score for ERA5). This highlits a good calibration and potential of ISBA to provide good quality estimates of land surface 

estimates such as Leaf Area Index (LAI) and Surface Soil Moisture (SSM). Then, within LDAS-Monde, SSM and LAI 

observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter 

(SEKF) using ISBA over a long period (2001-2018). Results of four experiments are then compared: Open-loop simulation 

(i.e., model run with no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) both forced by either ERA5 or 

ERA-Interim. After jointly assimilating SSM and LAI, sensitivity study of the model to the observations permits to notice that 

the assimilation is able to impact soil moisture in the first top soil layers (mainly up the first 20 cm), but also in deeper soil 

layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The benefit of using ERA5 

reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of 

both SSM and LAI: the analyses add skill to both configurations, indicating the healthy behaviour of LDAS-Monde. For LAI 

in particular, the southern region of Burkina Faso (dominated by a Sudan-Guinean climate) highlights a strong impact of the 

assimilation compared to the other two sub-regions of Burkina Faso (dominated by Sahelian and Sudan-Sahelian climates). In 

the southern part of the domain, differences between the model and the observations are the largest, prior to any assimilation. 

These differences are linked to the model failing to represent the behaviour of some specific vegetation species, which are 

known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for 

this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as 

well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring 

Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of 

evapotranspiration and gross primary production from assimilation. Finally, the impact of anthropogenic climate change in the 

hydroclimatology of Burkina Faso for the middle (2041– 2060) and late twenty-first century (2080–2099) has been investigated 

with regard the historical period (2001-2018). The results indicate that an elevated warming, leading to substantial increase of 

atmospheric water demand, is projected over the whole of Burkina Faso. In addition, mean precipitation unveils contrasting 

changes with wetter conditions by the middle of the century and drier conditions during the late twenty-first century. Such 

changes cause more/less evapotranspiration and soil moisture respectively during the two future periods. Furthermore, surface 

runoff shows a tendency to increase and decrease over short distances regardless whether the region receives more or less 

precipitation. Finally, it is found that while dry and semi-arid conditions develop in the RCP4.5 scenario, generalized arid 

conditions prevail over the whole Burkina Faso for RCP8.5. It is thus evident that these future climate conditions substantially 

threaten water resources availability for the country as well as agricultural activities. Therefore, strong governmental politics 

are needed to help design response options to cope with the challenges posed by the projected climate change for the country. 
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